Get tips on using pRNAT-H1.1/Neo to perform shRNA gene silencing Mouse - 4T1 Integrin α6
Get tips on using SIRT1 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - PC3 (human prostate cancer cell line) SIRT1
Get tips on using Rock-2 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - HT-1376 ROCK2
Get tips on using MISSION® pLKO.1-puro Non-Mammalian shRNA Control Transduction Particles to perform shRNA gene silencing Human - Islets of langerhans Negative control (scrambled) lentiviral particles
Get tips on using SNAI 1 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - MDA-MB-468 SNAI 1
Get tips on using SNAI 1 siRNA and shRNA Plasmids (h) to perform siRNA / miRNA gene silencing Human - MDA-MB-231 SNAI 1
Get tips on using AM5770: pSilencer™ 3.1-H1 neo to perform shRNA gene silencing Mouse - CT26 OPN
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Get tips on using pSUPER.retro.neo+gfp vector- Syn G (exon 3) siRNA to perform shRNA gene silencing Mouse - RGC-5 Syn G (Exon 3)
miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment