Site Directed Mutagenesis (SDM) Human Point mutation 786-O

- Found 11498 results

Get tips on using QuikChange Site-Directed Mutagenesis Kit, 10 Rxn to perform AAA for reviews

Products Agilent Technologies QuikChange Site-Directed Mutagenesis Kit, 10 Rxn

Get tips on using OSTEOPONTIN (O-17) ANTI-HUMAN RABBIT IGG AFFINITY PURIFY to perform Immunohistochemistry Mouse - Spp1/OPN

Products IBL, Immuno-Biological Laboratories co,Ltd OSTEOPONTIN (O-17) ANTI-HUMAN RABBIT IGG AFFINITY PURIFY

Get tips on using DMEM/Ham's F-12 liquid medium w/o L-Glutamine to perform Stem cell culture media Human Tendon Stem/Pluripotence cells (TSPCs)

Products Bio Sell DMEM/Ham's F-12 liquid medium w/o L-Glutamine

Get tips on using DMEM/Ham's F-12 liquid medium w/o L-Glutamine to perform Stem cell culture media mTSPCS

Products Bio Sell DMEM/Ham's F-12 liquid medium w/o L-Glutamine

Get tips on using DMEM High Glucose w/ L-Glutamine w/o Sodium Pyruvate to perform Mammalian cell culture media U87

Products Biowest DMEM High Glucose w/ L-Glutamine w/o Sodium Pyruvate

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli 56‐kDa O. tsutsugamushi strain Karp protein

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation GRP 78

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Deletion OCLN

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation hATCB

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation SOX2

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms