Site Directed Mutagenesis (SDM) Mouse Point mutation L929

- Found 5622 results

Get tips on using Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP) to perform Immunohistochemistry Anti-Glial Fibrillary Acidic Protein (GFAP) - Mouse Human -NA-

Products Sigma-Aldrich Monoclonal Anti-Glial Fibrillary Acidic Protein (GFAP)

Get tips on using CD279 (PD-1) Monoclonal Antibody (J43), PE, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD279/PD-1

Products eBioscience CD279 (PD-1) Monoclonal Antibody (J43), PE, eBioscience™

Get tips on using CD273 (B7-DC) Monoclonal Antibody (TY25), PE, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD273/PD-L2

Products eBioscience CD273 (B7-DC) Monoclonal Antibody (TY25), PE, eBioscience™

Get tips on using CD31 (PECAM-1) Monoclonal Antibody (390), Biotin, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD31/Pecam-1

Products eBioscience CD31 (PECAM-1) Monoclonal Antibody (390), Biotin, eBioscience™

Get tips on using anti-p62 / SQSTM1 (C-terminus) guinea pig polyclonal, serum to perform Autophagy assay cell type - MEFs (mouse embryonic fibroblasts)

Products Progen anti-p62 / SQSTM1 (C-terminus) guinea pig polyclonal, serum

Get tips on using LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit to perform Live / Dead assay mammalian cells - mouse, T-cell

Products Thermo Fisher Scientific LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit

Get tips on using CD184 (CXCR4) Monoclonal Antibody (2B11), Alexa Fluor 488, eBioscience™ to perform Flow cytometry Anti-bodies Mouse - CD184/CXCR4

Products eBioscience CD184 (CXCR4) Monoclonal Antibody (2B11), Alexa Fluor 488, eBioscience™

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type HUVEC

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type HeLa

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type oral squamous cell carcinoma

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms