Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Primary cells Rat aortic smooth muscle cells (rASMC)
Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Cells - primary human pulmonary artery smooth muscle cells
Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Rat primary vascular smooth muscle cells Biotin
Get tips on using CD49f (Integrin alpha 6) Monoclonal Antibody (eBioGoH3 (GoH3)), eFluor 450, eBioscience™ to perform Flow cytometry Anti-bodies Human - CD49f/ITGA6
Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.
Get tips on using Atg5 (D5F5U) Rabbit mAb to perform Autophagy assay cell type - MEFs (mouse embryonic fibroblasts)
Get tips on using Atg12 (D88H11) Rabbit mAb to perform Autophagy assay cell type - MEFs (mouse embryonic fibroblasts)
Get tips on using X-tremeGENE™ HP DNA Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human aortic smooth muscle cells (HOSMC)
Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat aortic smooth muscle cells
The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment