Site Directed Mutagenesis (SDM) Human Point mutation HUVEC

- Found 6041 results

Fenozol Product

Get tips on using Fenozol to perform Cell cytotoxicity / Proliferation assay cell type - HUVEC

Products A&A Biotechnology Fenozol

Get tips on using RPMI-1640 Medium to perform Mammalian cell culture media HUVEC

Products Sigma-Aldrich RPMI-1640 Medium

Get tips on using In Situ Cell Death Detection Kit, Fluorescein to perform Apoptosis assay cell type - HUVEC

Products Sigma-Aldrich In Situ Cell Death Detection Kit, Fluorescein

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Activation Neuro-2a Sim1

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion C2C12 Sgms2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion C2C12 Sgms1

Get tips on using Acridine Orange - CAS 65-61-2 - Calbiochem to perform Necrosis HUVEC

Products Merck Millipore Acridine Orange - CAS 65-61-2 - Calbiochem

Get tips on using In Situ Cell Proliferation Kit, FLUOS to perform Cell cytotoxicity / Proliferation assay cell type - HUVEC

Products Sigma-Aldrich In Situ Cell Proliferation Kit, FLUOS

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells MIR

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells Slx2

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms