Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat dermal fibroblasts (rDF)
Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Primary cells Human astrocytes
Get tips on using Lipofectamine® 2000 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Human lung fibroblasts (HLF)
Get tips on using SV 96 Total RNA Isolation System to perform RNA isolation / purification Cells - primary human airway epithelial cells
Get tips on using SV Total RNA Isolation System to perform RNA isolation / purification Cells - primary human coronary artery smooth muscle cells
Get tips on using TransIT®-LT1 Transfection Reagent to perform siRNA / RNAi /miRNA transfection Human Cells - Cal 27 cells Polymer / lipid
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment