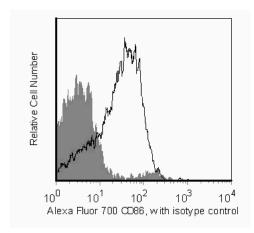
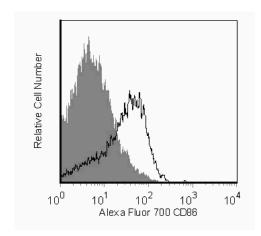
# **Technical Data Sheet**

# Alexa Fluor® 700 Rat Anti-Mouse CD86

#### **Product Information**

**Material Number:** 560581 B7-2 Alternate Name: 50 μg Size 0.2 mg/mlConcentration: Clone:


Mouse (CBA/Ca) LPS-activated splenic B Cells Immunogen:


Rat (LOU) IgG2a, κ Isotype: QC Testing: Mouse Reactivity:

Storage Buffer: Aqueous buffered solution containing protein stabilizer and ≤0.09% sodium

#### Description

The GL1 antibody has been reported to react with the B7-2 (CD86) costimulatory molecule expressed on a broad spectrum of leukocytes, including B lymphocytes, T lymphocytes, thioglycollate-induced peritoneal macrophages, dendritic cells and astrocytes. CD86 is expressed at low levels by freshly explanted peripheral B and T cells, and its expression is substantially increased by a variety of T cell- and B cell-specific stimuli with a peak expression after 18-42 hours of culture. In contrast to most naive CD4+ T cells, memory CD4+ T cells express B7-2, both at the mRNA and protein level. CD86, a ligand for CD28 and CD152 (CTLA-4), is one of the accessory molecules that plays an important role in T cell-B cell costimulatory interactions. It has been shown to be involved in immunoglobulin class-switching and triggering of mouse NK cell-mediated cytotoxicity. CD80 (B7-1) is an alternate ligand for CD28 and CD152 (CTLA-4). GL1 antibody reportedly blocks MLR and stimulation of T cells by natural antigen-presenting cells. In addition, a mixture of anti-B7-1 and anti B7-2 (GL1) mAbs reportedly inhibits the in vitro interaction of CTLA-4 with its ligand and the in vivo priming of cytotoxic T lymphocytes.





Flow cytometric analysis of CD86 on mouse splenocytes. Left Panel: LPS-stimulated C57BL/6 splenocytes (72 hr) were stained either with a Alexa Fluor® 700 Rat IgG2a, κ isotype control (shaded) or with the Alexa Fluor® 700 Rat Anti-Mouse CD86 antibody (unshaded). Right Panel: Freshly isolated unstimulated C57BL/6 splenocytes (shaded) and LPS-stimulated C57BL/6 splenocytes (72 hr) (unshaded) were stained with the Alexa Fluor® 700 Rat Anti-Mouse CD86 antibody. Histograms were derived from gated events based on light scattering characteristics for lymphocytes. Flow cytometry was performed on a BD™ LSR II flow cytometry system.

# **Preparation and Storage**

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography.

The antibody was conjugated to Alexa Fluor® 700 under optimum conditions, and unreacted Alexa Fluor® 700 was removed.

# **Application Notes**

Application

Flow cytometry Routinely Tested

# **BD Biosciences**

bdbiosciences.com

United States 877.232.8995 888.259.0187 32.53.720.550 0120.8555.90 65.6861.0633 55.11.5185.9995

For country-specific contact information, visit bdbiosciences.com/how\_to\_order/

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited.

For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.

BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2008 BD



Page 1 of 2

560581 Rev. 1

### **Suggested Companion Products**

| Catalog Number | Name                                                                 | Size   | Clone  |
|----------------|----------------------------------------------------------------------|--------|--------|
| 557963         | Alexa Fluor® 700 Rat IgG2a, κ Isotype Control                        | 0.1 mg | R35-95 |
| 553141         | Purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc Block <sup>TM</sup> ) | 0.1 mg | 2.4G2  |

# **Product Notices**

- 1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
- 2. An isotype control should be used at the same concentration as the antibody of interest.
- 3. Alexa Fluor® 700 has an adsorption maximum of ~700nm and a peak fluorescence emission of ~720nm. Before staining cells with this reagent, please confirm that your flow cytometer is capable of exciting the fluorochrome and discriminating the resulting fluorescence.
- 4. Alexa Fluor is a registered trademark of Molecular Probes, Inc., Eugene, OR.
- 5. The Alexa Fluor®, Pacific Blue<sup>TM</sup>, and Cascade Blue® dye antibody conjugates in this product are sold under license from Molecular Probes, Inc. for research use only, excluding use in combination with microarrays, or as analyte specific reagents. The Alexa Fluor® dyes (except for Alexa Fluor® 430), Pacific Blue<sup>TM</sup> dye, and Cascade Blue® dye are covered by pending and issued patents.
- Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
- 7. For fluorochrome spectra and suitable instrument settings, please refer to our Fluorochrome Web Page at www.bdbiosciences.com/colors.
- 8. Please refer to www.bdbiosciences.com/pharmingen/protocols for technical protocols.

#### References

Bluestone JA. New perspectives of CD28-B7-mediated T cell costimulation. Immunity. 1995; 2(6):555-559. (Biology)

Borriello F, Sethna MP, Boyd SD, et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. *Immunity*. 1997; 6(3):303-313. (Biology)

Boussiotis VA, Gribben JG, Freeman GJ, Nadler LM. Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. *Curr Opin Immunol.* 1994; 6(5):797-807. (Biology)

Freeman GJ, Borriello F, Hodes RJ, et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. *Science*. 1993; 262(5135):907-909. (Biology)

Hakamada-Taguchi R, Kato T, Ushijima H, Murakami M, Uede T, Nariuchi H. Expression and co-stimulatory function of B7-2 on murine CD4+ T cells. Eur J Immunol. 1998; 28(3):865-873. (Biology)

Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P, Hodes RJ. Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. *Science*. 1993; 262(5135):905-907. (Immunogen)

Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ. Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. *J Exp Med.* 1994; 180(2):631-640. (Biology)

Herold KC, Vezys V, Koons A, Lenschow D, Thompson C, Bluestone JA. CD28/B7 costimulation regulates autoimmune diabetes induced with multiple low doses of streptozotocin. *J Immunol.* 1997; 158(2):984-991. (Biology)

Inaba K, Witmer-Pack M, Inaba M, et al. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. *J Exp Med.* 1994; 180(5):1849-1860. (Biology)

Kawano T, Cui J, Koezuka Y, et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. *Science*. 1997; 278(5343):1626-1629. (Biology)

Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. *J Exp Med.* 1995; 182(2):459-465. (Biology) Larsen CP, Ritchie SC, Hendrix R, et al. Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. *J Immunol.* 1994; 152(11):5208-5219. (Biology)

Lenschow DJ, Su GH, Zuckerman LA, et al. Expression and functional significance of an additional ligand for CTLA-4. *Proc Natl Acad Sci U S A*. 1993; 90(23):11054-11058. (Biology)

Liu Y, Wenger RH, Zhao M, Nielsen PJ. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. *J Exp Med.* 1997; 185(2):251-262. (Biology)

Martin-Fontecha A, Assarsson E, Carbone E, Karre K, Ljunggren HG. Triggering of murine NK cells by CD40 and CD86 (B7-2). *J Immunol.* 1999; 162(10):5910-5916. (Biology)

McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. *Immunol Rev.* 1998; 165:231-247. (Biology)

Nakajima A, Azuma M, Kodera S, et al. Preferential dependence of autoantibody production in murine lupus on CD86 costimulatory molecule. *Eur J Immunol.* 1995; 25(11):3060-3069. (Biology)

Nikcevich KM, Gordon KB, Tan L, et al. IFN-gamma-activated primary murine astrocytes express B7 costimulatory molecules and prime naive antigen-specific T cells. *J Immunol.* 1997; 158(2):614-621. (Biology)

Nuriya S, Yagita H, Okumura K, Azuma M. The differential role of CD86 and CD80 co-stimulatory molecules in the induction and the effector phases of contact hypersensitivity. *Int Immunol.* 1996; 8(6):917-926. (Biology)

Rauschmayr-Kopp T, Williams IR, Borriello F, Sharpe AH, Kupper TS. Distinct roles for B7 costimulation in contact hypersensitivity and humoral immune responses to epicutaneous antigen. *Eur J Immunol.* 1998; 28(12):4221-4227. (Biology)

Roy M, Aruffo A, Ledbetter J, Linsley P, Kehry M, Noelle R. Studies on the interdependence of gp39 and B7 expression and function during antigen-specific immune responses. *Eur J Immunol.* 1995; 25(2):596-603. (Biology)

Turley SJ, Inaba K, Garrett WS, et al. Transport of peptide-MHC class II complexes in developing dendritic cells. *Science*. 2000; 288(5465):522-527. (Biology) Yang G, Mizuno MT, Hellstrom KE, Chen L. B7-negative versus B7-positive P815 tumor: differential requirements for priming of an antitumor immune response in lymph nodes. *J Immunol*. 1997; 158(2):851-858. (Biology)

560581 Rev. 1 Page 2 of 2