Quantifiler[™] Human and Y Human Male DNA Quantification Kits USER GUIDE

for use with: Quantifiler[™] Human DNA Quantification Kit Quantifiler[™] Quantifiler[™] Y Human Male DNA Quantification Kit

Catalog Numbers 4343895 and 4343906 Publication Number 4344790 Revision H

For Research, Forensic, or Paternity Use Only. Not for use in diagnostic procedures.

Manufacturer: Thermo Fisher Scientific | 7 Kingsland Grange | Warrington, Cheshire WA1 4SR | United Kingdom

The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. 4344790

Revision	Date	Description
Н	24 August 2018	Updated branding and trademarks, no technical changes.
G	January 2014	Update format, no technical changes.

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

Trademarks: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. TaqMan is a registered trademark of Roche Molecular Systems, Inc., used under permission and license. AmpliTaq Gold is a trademark of Roche Molecular Systems, Inc. Microsoft and Excel are trademarks of Microsoft Corporation.

©2018 Thermo Fisher Scientific Inc. All rights reserved.

Contents

CHAPTER 1 Overview	1
Product overview	
Purpose	
Product description	1
Chemistry overview	1
Assay overview	1
Target-specific assay components	1
About the targets	1
IPC assay components	1
About the probes	1
5' Nuclease assay process	1
Instrument overview	1
Fluorescence detection	1
SDS software overview	1
Composite spectrum	1
Processing multicomponent data	1
Normalization of reporter signals	1
Real-time data analysis	1
Amplification plot example	1
Phases of amplification	1
Relationship of amplified PCR product to initial template concentration	2
About the threshold	2
About the threshold cycle	2
How C _T values are determined	2
Relationship of threshold cycles to initial template amount	2
Procedural overview	2
Materials and equipment	2
Kit contents and storage	2
Additional storage guidelines for primer mixes	2
Equipment and materials not included	2

CHAPTER 2 Software Setup	
Section 2.1 7000 SDS Software Setup	
Overview	
Purpose	
Configuration	
Start the 7000 SDS	
Overview	
Start the computer	
Power on the instrument	
Start SDS software	
About plate documents	
How plate documents are used	
Plate document types	
Example plate document setup	
Set up a plate document	
Overview	
Create a blank plate document	
Create detectors	
Add detectors to the plate document	
Apply detectors for standards	
Apply detectors for unknown samples	
Add sample names for unknown samples	
Set thermal cycler conditions	
Save the plate document	
Set up a plate document template	
Purpose	
Template settings	
Creating a plate document template	
Create a plate document from a template	
Section 2.2 7900HT SDS Software Setup	
Dverview	40
Purpose	
Configuration	
Start the 7900HT Real-Time PCR System	60
	0+40 ۵۱
Start the 7900HT System	40
How plate documents are used	41
Plate document types	41 ـ
Example plate document setup	۰۰۰۰۰۰ 41
Set un a plate document	
Overview	
Create a blank plate document	42. د

Create detectors	43
Copy detectors to the plate document	45
Apply detectors for standards	45
Apply detectors for unknown samples	46
Add sample names to unknown samples	46
Set thermal cycler conditions	47
Save the plate document	48
Set up a plate document template	48
Purpose	48
Template settings	48
Create a plate document template	49
Create a plate document from a template	50
CHAPTER 3 PCR Amplification	. 51
Prepare the DNA quantification standard	51
Required materials	51
Guidelines for calculating the standards dilution series	51
Standards dilution series example	51
Preparation guidelines	52
Prepare the DNA quantification standards	52
Prepare the reactions	53
Required materials	53
Prepare the reactions	53
Run the reactions	54
Before you run the reactions	54
Run the plate on the 7000 SDS	54
Run the plate on the 7900HT SDS	55
CHAPTER 4 Data Analysis and Results	. 57
Section 4.1 7000 SDS Data Analysis	58
Analyze the plate document	58
View results	58
Overview	58
View the standard curve	58
Amplification plot results	59
View the amplification plot	59
View the report	59
Print or export the report	60
Section 4.2 7900HT SDS Data Analysis	61
Analyze the plate document	61
View results	61
Overview	61

Amplification plot results	62
View the amplification plot	62
Results table	62
View the results table	63
Print the results	63
Export the results	63
CHAPTER 5 Interpretation of Results	65
Check analysis settings	65
Check analysis settings on the 7000 SDS	65
Check analysis settings on the 7900HT SDS	66
Examine the standard curve	66
About standard curve results	66
R ² value	67
R² value < 0.98 for Quantifiler™ Y Kit only	67
Slope	67
Troubleshoot the standard curve	68
Example 1	69
Example 2	69
Example 3	
Using the Internal PCR Control system	70
Purpose	
Components	71
Interpret IPC results	71
True negative results	71
Invalid IPC results	
Disregard IPC results	
Partial PCR inhibition	
Determine the normal range for IPC	
Evaluate PCR inhibition	
Troubleshoot amplification plots	73
Assess quantity	77
Purpose	
Assay sensitivity	
Stochastic effects	
If insufficient DNA is present	
CHAPTER 6 Data Analysis and Results	79
Overview	80
About this chapter	80
Importance of validation	80
Experiments	

Section 6.1 ABI PRISM [™] 7000 Sequence Detection System Validation (SDS Software v1.0)	81
Precision	81
Experiment	81
Results	81
Reproducibility	83
Experiment	
Results	83
Specificity with a Human DNA Panel	85
Experiment	
Results	
Specificity with a Non-Human Panel	86
Experiment	86
Results	86
Snecificity with a Bacterial Pools Panel	88
Experiment	88
Results	88
Soncitivity	20
DNA samples tested	/80
Evneriment	89
Results	
Stability	رە
Experiment	
Results	
Mixture Studies	ده ده
Experiment	
Reculte	9/
Degraded DNA Studies	
Experiment	
Comparison with A ₂₆₀ and Quantiblot" Kit	
Resolution panel	
Comparison with A ₂₆₀ and dye intercalation	
DNA samples tested	
Experiment	
Kesulis	
Assay background	
Results	103

Section 6.2 Applied Biosystems [™] 7900HT Real-Time PCR System Validation (SDS Software v2.0)	14
Overview)4
Precision (7900HT SDS))4
Experiment)4
Results)4
Mixture Studies (7900HT SDS))5
Experiment)6
Results)6
Comparisons with other methods (7900HT SDS) 10)7
Experiment)7
Results)8
Section 6.3 Casework Sample Analysis 10	19
Case type studies)9
Experiment)9
Results)9
Section 6.4 Applied Biosystems [™] 7500 Real-Time PCR System Validation (SDS Software v1.2.3)	3
Overview	3
Validation experiments performed11	3
Materials and methods	3
Reagents	3
Instruments	3
Experimental setup	4
Precision and accuracy testing11	4
Reproducibility and sensitivity testing11	4
Background testing	5
Data collection	5
Data analysis	15
Initial data compiling and analysis	5
Statistical data analysis	6
Precision and accuracy	6
Reproducibility and sensitivity	.ŏ n
Auto Baseline analysis versus Manual analysis	20
Discussion 12	- ' 22
Precision and accuracy 12	.∠ 72
Reproducibility and sensitivity	22
Auto Baseline analysis versus Manual analysis	23
Conclusion	23

Section 6.5 ABI PRISM [™] 7000 Sequence Detection System Validation (SDS Software v1.2.3)	
Overview	
Validation experiments performed	
Materials and methods	
Reagents	
Instruments	
Experimental setup	
Precision and accuracy testing	
Reproducibility sensitivity, and background testing	125
Data collection	126
Data analysis	
Initial data compiling and analysis	126
Precision and accuracy	126
Reproducibility and sensitivity	129
Background	131
Auto Baseline analysis versus Manual analysis	132
Discussion	134
Precision and accuracy	
Reproducibility and sensitivity	
Manual analysis versus Auto Baseline analysis	
Conclusion	134
APPENDIX A Safety	137
Chemical safety	138
Documentation and Support	139
Obtaining SDSc	120
Limited Product Warranty	139
Bibliography	141
Index	143

Contents

About This Guide

IMPORTANT! Before using this product, read and understand the information in the "Safety" appendix in this document.

About This Guide Revision history

Overview

Product overview	13
Chemistry overview	14
Instrument overview	16
SDS software overview	17
Real-time data analysis	18
Procedural overview	22
Materials and equipment	22

Product overview

The QuantifilerTM Human DNA Quantification Kit (QuantifilerTM Human Kit) Purpose (Cat. no. 4343895) and the Quantifiler[™] Y Human Male DNA Quantification Kit (Quantifiler[™] Y Kit) (Cat. no. 4343906) are designed to quantify the total amount of amplifiable human (and higher primate) DNA or human male DNA in a sample. The results from using the kits can aid in determining: If sufficient human DNA or human male DNA is present to proceed with short tandem repeat (STR) analysis How much sample to use in STR analysis applications Product The Quantifiler[™] Kits contain all the necessary reagents for the amplification, detection, and quantification of a human-specific DNA target or a human maledescription specific DNA target. The reagents are designed and optimized for use with the following instruments and software: • ABI PRISM[™] 7000 Sequence Detection System and SDS Software v1.0 • Applied Biosystems[™] 7900HT Sequence Detection System (no automation module) and SDS Software v2.0. See Chapter 6, "Data Analysis and Results" for validation studies performed using the Applied Biosystems[™] 7500 Real-Time PCR System with SDS Software v1.2.3 and the

ABI PRISM[™] 7000 Sequence Detection System with SDS Software v1.2.3.

Chemistry overview

Assay overview The DNA quantification assay combines two 5' nuclease assays:

 A target-specific (human DNA or human male DNA) assay
 An internal PCR control (IPC) assay

 Target-specific assay consists of:

 Two primers for amplifying human DNA or human male DNA
 One TaqMan[™] MGB probe labeled with FAM[™] dye for detecting the amplified sequence

 About the targets Table 1 provides information about the targets of PCR amplification in the Quantifiler[™] Human Kit and the Quantifiler[™] Y Kit.

Kit	Gene Target	Location	Amplicon Length	Region Amplified	Ploidy
Quantifiler™ Human Kit	Human telomerase reverse transcriptase gene (hTERT)	5p15.33	62 bases	Nontranslated region (intron)	Diploid ⁺
Quantifiler [™] Y Kit	Sex-determining region Y gene (SRY)	Yp11.3	64 bases	Nontranslated region	Haploid [†]

Table 1 Targets of Quantifiler[™] Kits

† Single-copy target

٠

IPC assay components

The IPC assay consists of:

- IPC template DNA (a synthetic sequence not found in nature)
 - Two primers for amplifying the IPC template DNA
 - One TaqMan[™] MGB probe labeled with VIC[™] dye for detecting the amplified IPC DNA

About the probes

The TaqMan[™] MGB probes contain:

- A reporter dye (FAMTM dye or VICTM dye) linked to the 5' end of the probe
- A minor groove binder (MGB) at the 3' end of the probe
- This modification increases the melting temperature (Tm) without increasing probe length (Afonina *et al.,* 1997; Kutyavin *et al.,* 1997), which allows the design of shorter probes.
- A nonfluorescent quencher (NFQ) at the 3' end of the probe
- Because the quencher does not fluoresce, Life Technologies sequence detection systems can measure reporter dye contributions more accurately.

- **3.** Based on wavelength, the grating separates the light into a predictably spaced pattern across the CCD camera.
- **4.** During the run, the CCD camera detects the fluorescence emission between 500 nm and 660 nm from each well.
- **5.** The SDS software obtains the fluorescence emission data from the CCD camera and applies data analysis algorithms.

SDS software overview

This section describes how the SDS software analyzes raw run data from real-time runs. Raw data consists of the spectral data between 500 nm to 660 nm collected by the SDS software during a sequence detection run.

CompositeFigure 6 shows a composite fluorescence spectrum from a single well containing thespectrumpassive reference, one probe labeled with FAM[™] dye and a nonfluorescent quencher,
and one probe labeled with VIC[™] dye and a nonfluorescent quencher. The example
shows how the overlapping component dye spectra contribute to the composite
spectrum.

Figure 6 Example of a composite spectrum

Processing multicomponent data

During the multicomponent transformation, the SDS software uses algorithms to determine the contribution of each dye:

- An algorithm removes the background component stored in the background calibration file to eliminate the contribution of background fluorescence in the raw data.
- The software uses the extracted pure dye standards to express the composite spectrum in terms of the pure dye components.
- Then, an algorithm applies matrix calculations to determine the contributions of each component dye to the composite spectrum.

How C_T values are determined

To determine the C_T value, the SDS software uses the R_n values collected from a predefined range of PCR cycles called the baseline (the default baseline occurs between cycles 6 and 15 on the 7000 SDS and between cycles 3 and 15 on the 7900HT SDS):

- 1. The software generates a baseline-subtracted amplification plot of ΔR_n versus cycle number.
- 2. An algorithm defines the cycle where the ΔR_n value crosses the threshold setting (the default threshold setting is 0.2) as the threshold cycle (C_T).

The following equation describes the exponential amplification of the PCR:

$$X_n = X_m (1 + E_X)^{n - m}$$

where:

Xn = number of target molecules at cycle n (so that n > m)

Xm = number of target molecules at cycle m

EX = efficiency of target amplification (between 0 and 1)

n – m = number of cycles elapsed between cycle m and cycle n

Amplicons designed and optimized according to our guidelines (amplicon size <150 bp) have amplification efficiencies that approach 100%. Therefore EX = 1 so that:

$$X_n = X_m (1+1)^{n-m}$$

= $X_m (2)^{n-m}$

To define the significance in amplified product of one thermal cycle, set n - m = 1 so that:

$$X_n = X_m(2)^1 = 2X_m$$

Therefore, each cycle in the PCR reaction corresponds to a two-fold increase in product. Likewise, a difference in C_T values of 1 equates to a two-fold difference in initial template amount.

Procedural overview

Materials and equipment

Kit contents and storage

Each QuantifilerTM Kit contains materials sufficient to perform 400 reactions at a 25- μ L reaction volume.

 Table 2
 Quantifiler[™] Kits contents

Reagent	Contents	Quantity	Storage
Quantifiler [™] Human Primer Mix or Quantifiler [™] Y Human Male Primer Mix	Forward and reverse primers to amplify human DNA or human male DNA target	3 tubes, 1.4 mL each	–15 to –25 °C
	Probe to detect human DNA or human male DNA target		
	IPC system primers, template, and probe		
Quantifiler [™] Human DNA Standard	200 ng/µL purified DNA standard	1 tube, 120 μL	–15 to –25 °C
Quantifiler [™] PCR Reaction Mix	AmpliTaq Gold [™] DNA Polymerase, dNTPs with dUTP, Passive Reference, and optimized buffer components	1 tube, 5 mL	2 to 8 °C

Additional storage guidelines for

primer mixes

- Follow the additional guidelines for storing the primer mixes:
 - Minimize freeze-thaw cycles.
 - Keep protected from direct exposure to light. Excessive exposure to light may affect the fluorescent probes.

Equipment and materials not included

Table 3 through Table 5 list required and optional equipment and materials not supplied with the Quantifiler ${}^{\rm TM}$ Kits.

Table 3 Equipment

Equipment	Source	
Applied Biosystems [™] 7900HT Real-Time PCR System (no automation)	Contact your local Life Technologies sales	
ABI PRISM [™] 7000 Sequence Detection System	representative.	
Tabletop centrifuge with 96-well plate adapters (optional)	major laboratory supplier (MLS)	

Table 4 User-supplied materials

Material	Source
Quantifiler [™] Human DNA Quantification Kit	Life Technologies (Cat. no. 4343895)
Quantifiler™ Y Human Male DNA Quantification Kit	Life Technologies (Cat. no. 4343906)
Glycogen, 20 mg (1 mL)	Roche Applied Science (Cat. no. 901 393)
High-Throughput Setup	
96-Well Optical Reaction Plates	Life Technologies (Cat. no. 4306737)
Optical Adhesive Covers Starter Kit (20 covers, 1 compression pad, 1 applicator)	Life Technologies (Cat. no. 4313663)
Optical Adhesive Covers (100 covers)	Life Technologies (Cat. no. 4311971)
MicroAmp [™] Splash Free Support Base	Life Technologies (Cat. no. 4312063)

Material	Source
Mid-to-Low-Throughput Setup	
MicroAmp [™] Optical Tubes (8 tubes/strip, 125 strips)	Life Technologies (Cat. no. 4316567)
MicroAmp [™] 96-Well Tray/Retainer Set	Life Technologies (Cat. no. 403081)
Optical Caps (8 caps/strip, 300 strips)	Life Technologies (Cat. no. 4323032)
Compression pad from Optical Adhesive Covers Starter Kit	Life Technologies (Cat. no. 4313663)
Note: Not necessary if using Optical Caps	

Table 5 Documents

Document	Life Technologies Pub. no.
ABI PRISM [™] 7000 Sequence Detection System User Guide	4317596
Applied Biosystems [™] 7900HT Sequence Detection System User Guide	4317596

Software Setup

Section 2.1 7000 SDS Software Setup	26
Overview	26
Start the 7000 SDS	26
About plate documents	27
Set up a plate document	29
Set up a plate document template	37
Section 2.2 7900HT SDS Software Setup	40
Overview	40
Start the 7900HT Real-Time PCR System	40
About plate documents	41
Set up a plate document	42
Set up a plate document template	48

Plate documentYou can use the SDS software to create two types of plate document files.types

Plate Document Type	File Extension	Description
SDS document	*.sds	Primary file to use when performing a run. Required for all experiments.
SDS template	*.sdt	File that already contains run parameters that are commonly used in plate documents, such as detectors, thermal cycler conditions, and so on. Streamlines the creation of the SDS document (*.sds) file.

Example plate document setup

You can arrange the reactions in any well of the reaction plate, but you need to set up the plate document so that it corresponds exactly to the arrangement of the standards and unknown samples in the wells of the reaction plate. Table 6 shows one example of arranging reactions when running two Quantifiler[™] Kits on one 96-well reaction plate:

- Wells A1 through D12 (gray) correspond to reactions using the Quantifiler[™] Human DNA Quantification Kit (Quantifiler[™] Human Kit)
- Wells E1 through H12 (white) correspond to reactions using the Quantifiler[™] Y Human Male DNA Quantification Kit (Quantifiler[™] Y Kit)

For each Quantifiler[™] Kit assay, there are eight DNA quantification standards and two reactions for each standard. See "Prepare the DNA quantification standard" on page 51 for more information about the DNA quantification standards.

	1	2	3	4	5	6	7	8	9	10	11	12
А	Std 1	Std 1	Std 2	Std 2	Std 3	Std 3	Std 4	Std 4	Std 5	Std 5	Std 6	Std 6
В	Std 7	Std 7	Std 8	Std 8	UNKN							
С	UNKN											
D	UNKN											
Е	Std 1	Std 1	Std 2	Std 2	Std 3	Std 3	Std 4	Std 4	Std 5	Std 5	Std 6	Std 6
F	Std 7	Std 7	Std 8	Std 8	UNKN							
G	UNKN											
Н	UNKN											

Table 6 Example plate setup of reactions with two kits

Table 7 shows another example of arranging reactions when running two Quantifiler[™] Kits on one 96-well reaction plate if you are using repeat pipettors:

- Wells A1 through D6 (gray) correspond to reactions using the Quantifiler[™] Human Kit
- Wells A7 through H12 (white) correspond to reactions using the Quantifiler[™] Y Kit

For each Quantifiler[™] Kit assay, there are eight DNA quantification standards and two reactions for each standard. See "Prepare the DNA quantification standard" on page 51 for more information about the DNA quantification standards.

2

	1	2	3	4	5	6	7	8	9	10	11	12
А	Std 1	Std 1	UNKN	UNKN	UNKN	UNKN	Std 1	Std 1	UNKN	UNKN	UNKN	UNKN
В	Std 2	Std 2	UNKN	UNKN	UNKN	UNKN	Std 2	Std 2	UNKN	UNKN	UNKN	UNKN
С	Std 3	Std 3	UNKN	UNKN	UNKN	UNKN	Std 3	Std 3	UNKN	UNKN	UNKN	UNKN
D	Std 4	Std 4	UNKN	UNKN	UNKN	UNKN	Std 4	Std 4	UNKN	UNKN	UNKN	UNKN
Е	Std 5	Std 5	UNKN	UNKN	UNKN	UNKN	Std 5	Std 5	UNKN	UNKN	UNKN	UNKN
F	Std 6	Std 6	UNKN	UNKN	UNKN	UNKN	Std 6	Std 6	UNKN	UNKN	UNKN	UNKN
G	Std 7	Std 7	UNKN	UNKN	UNKN	UNKN	Std 7	Std 7	UNKN	UNKN	UNKN	UNKN
Н	Std 8	Std 8	UNKN	UNKN	UNKN	UNKN	Std 8	Std 8	UNKN	UNKN	UNKN	UNKN

 Table 7 Example plate setup of reactions using repeat pipettors

Set up a plate document

Overview	Setting up a plate document to run Quantifiler [™] Kit assays involves:
	1. Create a blank plate document (page 29)
	2. Create detectors (the first time only, page 30)
	3. Add detectors to the plate document (page 32)
	4. Apply detectors for standards (page 32)
	5. Apply detectors for unknown samples (page 34)
	6 . Add sample names for unknown samples (page 34)
	7. Set thermal cycler conditions (page 35)
	8. Save the plate document (page 37)
Create a blank	To create a blank plate document:
plate document	1. If the SDS software is not already started, select Start ▶ Programs ▶ ABI Prism 7000 ▶ ABI Prism 7000 SDS Software.
	2. In the SDS software, select File ▶ New to open the New Document dialog box.
	New Document

•

•

Cancel

OK

Container: 96-Well Clear -

Template : Blank Document

Browse ...

Quantifiler[™] Human and Y Human Male DNA Quantification Kits User Guide

2

For example:

Sampl	e Name: Unkno	wn 1				
Use	Detector	Reporter	Quenche	Task	Quantity	Color
2	Quantifiler Human	FAM	(none)	Unknown		
	Quantifiler Y	FAM	(none)	Unknown		
☑	IPC	VIC	(none)	Unknown		

Note: Samples with identical sample names are treated as replicates by the SDS software. Results for replicate reactions are grouped together automatically for data analysis.

Set thermal cycler Before running a Quantifiler[™] Kit assay, you need to make two changes to the default thermal cycler conditions:

- Thermal profile
- Sample volume

To set thermal cycler conditions:

- 1. In the plate document, select the **Instrument** tab.
- **2.** Press the **Shift** key and click within the Stage 1 hold step (50 ·C for 2 minutes) to select it.

3. After the hold step is selected, press the Delete key.

4. Make sure that the thermal profile appears as follows:

5. Change the Sample Volume to 25 (μ L) and make sure that the 9600 Emulation box is selected.

Note: Selecting the 9600 Emulation box reduces the ramp rate.

Make sure that this box is selected

2

Save the plateBefore running the reaction plate, save the plate document as an SDS Document (*.sds)documentfile.

Note: To save the plate document as a template, see "Set up a plate document template" on page 37.

To save the plate document:

- 1. Select File > Save.
- **2.** Select the location for the plate document.
- **3.** Enter a file name.
- 4. For Save as type, select SDS Documents (*.sds).
- 5. Click Save.

Set up a plate document template

PurposeA plate document template reduces the time required to set up a plate document. This
section describes how to create an SDS Template Document (*.sdt) for running
Quantifiler™ Kit assays.Template settingsIn addition to plate document settings (assay and container), templates can contain:
• Assay-specific detectors
• Well assignments for quantification standards, with detectors, tasks, and quantity
• Well assignments for unknown samples, with detectors and tasks
• Instrument settings: thermal cycler conditions and reaction volume settingsCreating a plate
document templateThis procedure assumes that you have created the detectors for running reactions
using the Quantifiler™ Kits (page 30).
To create a plate document template:

- If the SDS software is not already started, select Start ➤ Programs ➤ ABI Prism 7000 ➤ ABI Prism 7000 SDS Software.
- 2. Select **File New**, complete the New Document dialog box, then click **OK**.

New Document		×
Assay:	Absolute Quantitation	•
Container :	96-Well Clear	•
Template :	Blank Document	•
	Browse	
	ОК	Cancel

Quantifiler[™] Human and Y Human Male DNA Quantification Kits User Guide

- **3.** Apply the desired template settings to the plate document:
 - Add detectors to the plate document (page 32)
 - Apply detectors for standards and for unknown samples (page 32 and page 34)
 - Set thermal cycler conditions (page 35)
- 4. Select File > Save As and complete the Save As dialog box:
 - a. For Save as type, select SDS Templates (*.sdt).
 - **b.** Locate and select the Templates folder within the software folder:

X:Program Files ABI Prism 7000 Templates, where X is the hard drive on which the SDS software is installed.

Saving the template file in the Templates folder makes the template available in the Template drop-down list of the New Document dialog box (see step 2 in "Create a plate document from a template" on page 38).

c. For File name, enter a name for the template. For example, enter **Quantifiler Template**:

Enter a name for the template

d. Click Save.

After you create a template, you can use it to create a plate document:

- 1. If the SDS software is not already started, select **Start ▶ Programs ▶ ABI Prism** 7000 ▶ **ABI Prism** 7000 SDS Software.
- 2. Select File ▶ New and in the New Document dialog box and make the following selections:
 - For Assay, select Absolute Quantitation.
 - For Container, select **96-Well Clear**.
 - For Template, select an appropriate template from the list.

Note: If the template is not available in the list, click **Browse** to locate and select an appropriate template.

Create a plate document from a template

2

- **3.** Complete the plate document setup:
 - Add detectors to the plate document (page 32)
 - Apply detectors for standards and for unknown samples (page 32 and page 34)
 - Set thermal cycler conditions (page 35)

Note: The tasks that you perform vary according to which settings were defined in the template.

4. Save the plate document (page 37).

For Save as type, select **SDS Documents (*.sds)**.

Section 2.2 7900HT SDS Software Setup

Overview

Purpose	During software setup, you start up the Applied Biosystems [™] 7900HT Real-Time PCR System and set up a plate document for DNA quantification using the Quantifiler [™] Kits.
Configuration	The Quantifiler [™] Kits are supported using the following configuration of the 7900HT Real-Time PCR System for real-time data collection and analysis:
	• 96-well reaction plates
	Manual setup
	Sequence Detection Systems (SDS) software v2.0
	Note: Use of the robotic microplate handler and/or 384-well reaction plates is not

Start the 7900HT Real-Time PCR System

supported.

Overview	Starting the Applied Biosystems [™] 7900HT Real-Time PCR System involves:
	1. Powering on the computer.
	2. Powering on the instrument.
	3. Starting the SDS software.
Start the 7900HT	To start the 7900HT System:
System	1. Press the power buttons on the computer and on the monitor.
	2. In the login screen, enter the User Name and Password.
	3. Press the power button below the status lights on the front of the instrument.
	Red Orange Green
	Power button

At startup, the instrument:

- Emits a high-pitched tone, indicating that the system is initialized
- Cycles the status lights (red orange green), indicating that the instrument is active
- 4. Select Start > Programs > Applied Biosystems > SDS 2.0.

At startup, the software attempts to establish communication with the 7900HT instrument. If the connection is successful, the software displays florenced to 'PlateName' in the status bar.

About plate documents

How plate documents are used Running a reaction plate on the 7900HT Real-Time PCR System requires creating and setting up a plate document using the SDS software. A plate document is a representation of the arrangement of samples (standards and unknowns) and reagents on the reaction plate. The SDS software uses the plate document to:

- Coordinate the instrument operation, such as thermal cycling and data collection
- Organize and store the data gathered during the run
- Analyze the data from the run

Plate document You can use SDS software to create two types of plate document files.

types

Plate Document Type	File Extension	Description
Single plate document	*.sds	Primary file to use when performing a run. Required for all experiments.
Template plate document	*.sdt	File that already contains run parameters that are commonly used in plate documents, such as detectors, thermal cycler conditions, and so on. Streamlines the creation of the SDS document (*.sds) file.

Example plate document setup

You can arrange the reactions in any well of the reaction plate, but you need to set up the plate document so that it corresponds exactly to the arrangement of the standards and unknown samples in the wells of the reaction plate. Table 8 shows one example of arranging reactions when running two Quantifiler[™] Kit assays on one 96-well plate:

- Wells A1 through D12 (gray) correspond to reactions using the Quantifiler[™] Human Kit
- Wells E1 through H12 (white) correspond to reactions using the Quantifiler[™] Y Kit

Note: For each QuantifilerTM Kit assay, there are eight DNA quantification standards and two reactions for each standard. See "Prepare the DNA quantification standard" on page 51 for more information about the DNA quantification standards.

	1	2	3	4	5	6	7	8	9	10	11	12
А	Std 1	Std 1	Std 2	Std 2	Std 3	Std 3	Std 4	Std 4	Std 5	Std 5	Std 6	Std 6
В	Std 7	Std 7	Std 8	Std 8	UNKN							
С	UNKN											
D	UNKN											
Е	Std 1	Std 1	Std 2	Std 2	Std 3	Std 3	Std 4	Std 4	Std 5	Std 5	Std 6	Std 6
F	Std 7	Std 7	Std 8	Std 8	UNKN							
G	UNKN											
Н	UNKN											

Table 8	Example	arrangement	of	reactions	with two l	kits
---------	---------	-------------	----	-----------	------------	------

Table 9 shows another example of arranging reactions when running two Quantifiler[™] Kits on one 96-well reaction plate if you are using repeat pipettors:

- Wells A1 through D6 (gray) correspond to reactions using the Quantifiler[™] Human Kit
- Wells A7 through H12 (white) correspond to reactions using the Quantifiler[™] Y Kit

For each Quantifiler[™] Kit assay, there are eight DNA quantification standards and two reactions for each standard. See "Prepare the DNA quantification standard" on page 51 for more information about the DNA quantification standards.

	1	2	3	4	5	6	7	8	9	10	11	12
А	Std 1	Std 1	UNKN	UNKN	UNKN	UNKN	Std 1	Std 1	UNKN	UNKN	UNKN	UNKN
В	Std 2	Std 2	UNKN	UNKN	UNKN	UNKN	Std 2	Std 2	UNKN	UNKN	UNKN	UNKN
С	Std 3	Std 3	UNKN	UNKN	UNKN	UNKN	Std 3	Std 3	UNKN	UNKN	UNKN	UNKN
D	Std 4	Std 4	UNKN	UNKN	UNKN	UNKN	Std 4	Std 4	UNKN	UNKN	UNKN	UNKN
Е	Std 5	Std 5	UNKN	UNKN	UNKN	UNKN	Std 5	Std 5	UNKN	UNKN	UNKN	UNKN
F	Std 6	Std 6	UNKN	UNKN	UNKN	UNKN	Std 6	Std 6	UNKN	UNKN	UNKN	UNKN
G	Std 7	Std 7	UNKN	UNKN	UNKN	UNKN	Std 7	Std 7	UNKN	UNKN	UNKN	UNKN
Н	Std 8	Std 8	UNKN	UNKN	UNKN	UNKN	Std 8	Std 8	UNKN	UNKN	UNKN	UNKN

Table 9 Example arrangement of reactions using repeat pipettors

Set up a plate document

Overview

Setting up a plate document involves:

- 1. Create a blank plate document (page 43)
- 2. Create detectors (page 43)
- 3. Copy detectors to the plate document (page 45)
- 4. Apply detectors for standards (page 45)
- 5. Apply detectors for unknown samples (page 46)

- 6. Apply detectors for unknown samples (page 46)
- 7. Set thermal cycler conditions (page 47)
- **8.** Save the plate document (page 48)

To create a blank plate document:

Biosystems ► SDS 2.0.

Create a blank plate document

1. If the SDS software is not already started, select **Start Programs Applied**

2. Select File > New, complete the New Document dialog box, then click OK.

New Docu	ment X
Assay:	Absolute Quantification (Standard Curve)
Container:	96 Wells Clear Plate
Template:	Blank Template
	Browse
Barcode:	
?	OK Cancel

Create detectors Before you set up the plate document, you need to create detectors in the SDS software for running Quantifiler[™] Kit assays. After the detectors are created, you do not need to create detectors for subsequent runs of Quantifiler[™] Kit assays and you can skip to "Copy detectors to the plate document" on page 45.

To create detectors:

- 1. With a new plate document open, select **Tools** > **Detector Manager**.
- **2.** Create a detector for the QuantifilerTM Human kit:
 - **a.** In the lower left part of the Detector Manager, click **New**, then complete the dialog box:

Add Detector	×
Name:	Quantifiler Human
Group:	Default
Description:	
Reporter:	FAM
Quencher:	Non Fluorescent
Color:	—
Notes:	
Created:	Jul 17, 2003 3:07:08 PM
Last Modified:	Jul 17, 2003 3:07:08 PM
	OK Cancel

Quantifiler[™] Human and Y Human Male DNA Quantification Kits User Guide

- **b.** Click **OK** to return to the Detector Manager.
- **3.** Create a detector for the QuantifilerTM Y Human Male Kit:
 - a. In the Detector Manager, click New and complete the dialog box:

Add Detector	X
Name:	Quantifiler Y
Group:	Default
Description:	
Reporter:	FAM
Quencher:	Non Fluorescent
Color:	
Notes:	
Created:	Jul 17, 2003 3:07:55 PM
Last Modified:	Jul 17, 2003 3:07:55 PM
	OK Cancel

- **b.** Click **OK** to return to the Detector Manager.
- **4.** Create a detector for the IPC assay:
 - **a.** In the Detector Manager, click **New**, then complete the Add Detector dialog box:

Add Detector	×
Name:	IPC
Group:	Default
Description:	
Reporter:	VIC
Quencher:	Non Fluorescent
Color:	
Notes:	
Created:	Jul 17, 2003 3:08:13 PM
Last Modified:	Jul 17, 2003 3:08:13 PM
	OK Cancel

b. Click **OK** to return to the Detector Manager.

Copy detectors to the plate document

To copy detectors to the plate document:

- 1. If the Detector Manager is not already open, select **Tools > Detector Manager**.
- Select the Quantifiler[™] Human, Quantifiler[™] Y, and the IPC detectors by clicking them while pressing the Ctrl key.
 Note: If the detectors are not available, create them first (see page 43 for the procedure).
- 3. With the three detectors selected, click Copy To Plate Document.
- 4. Click Done to close the Detector Manager and return to the plate window.

Apply detectors for standards You need to apply the detectors to the plate document for the wells on the reaction plate that contain DNA quantification standards. Repeat the procedure until you complete applying detector tasks, quantities, and sample names for all quantification standards.

IMPORTANT! Set up detectors for each quantity and for each kit separately. For example, set up detectors for Std. 1 for the QuantifilerTM Human Kit first, and then for Std. 2 for the QuantifilerTM Human Kit, and so on, until you finish setting up the detectors for all wells containing quantification standards.

- 1. In the plate grid, press the **Ctrl** key while you select the wells that correspond to a specific quantification standard for one kit.
- 2. Complete the Well Inspector:
 - **a**. Select the Use boxes for the applicable detectors:
 - IPC
 - QuantifilerTM Human *or* QuantifilerTM Y
 - **b**. For the QuantifilerTM Human *or* QuantifilerTM Y detector:
 - Click **Unknown** in the Task column, then select **Standard** from the drop-down list.
 - Select the Quantity field and enter the quantity of DNA in the well.

IMPORTANT! Although you do not enter units for Quantity, you must use a consistent unit (for example, $ng/\mu L$) for all standard quantities. The units used for standard quantities defines the quantification units for analysis results.

Note: Leave the IPC detector Task for standard reactions set to Unknown. Quantity values are not needed for IPC detectors.

- c. Enter the Sample Name (for example, Std. 1, Std. 2, and so on).
- d. Make sure that ROX is selected for the Passive Reference.

For example:

Set	Instrument				
Well(s): A1-A2					?
Sam	ple Name: Std. 1				
Use	Detector	Reporter	Task	Quantity	Color
X	IPC	VIC r	Unknown	0	
X	Quantifiler Human	FAM	Standard	5E1	
	Ouantifiler Y	EAM		0	
F	Quantifiler Y	FAM FAM	Stariuaru	0	

Task for IPC set to **Unknown** (default)

Apply detectors for unknown samples

You need to apply detectors to the plate document for the wells on the reaction plate that contain unknown samples.

IMPORTANT! If you run reactions for the Quantifiler[™] Human Kit and the Quantifiler[™] Y Kit on the same plate, apply detectors for unknown samples for each kit separately.

To apply detectors for unknown samples:

- 1. In the plate grid, press the **Ctrl** key and select the wells that contain unknown samples for one kit.
- 2. In the Well Inspector, select the Use boxes for the detectors in the selected wells:
 - IPC
 - QuantifilerTM Human *or* QuantifilerTM Y detector

For example:

Setup Instrument					
Well(s): B5-D12					
Sample Name: * Mixed *					
Use	Detector	Reporter	Task	Quantity	Color
X	IPC	VIC	Unknown	C	
X	Quantifiler Human	FAM	Unknown	C	
Г	Ouantifiler Y	FAM		C	

3. In the Well Inspector, make sure that ROX is selected for the Passive Reference.

Passive Reference: ROX 💌

Add sample names to unknown samples

- 1. In the plate grid, select a reaction well containing an unknown sample.
- 2. In the Well Inspector panel, enter a name in the Sample Name field.

Repeat this procedure to enter the names for all unknown samples.

IMPORTANT! Samples with identical sample names are treated as replicates by the SDS software. Results for replicate reactions are grouped together automatically for data analysis.

2

Set thermal cycler conditions

To set thermal cycler conditions:

- 1. In the plate window, select the **Instrument** tab.
- **2.** Delete the Stage 1 hold step (50 ·C for 2 minutes):
 - a. Press the **Shift** key and click within the Stage 1 hold step.

- **b.** After the hold step is selected, press the **Delete** key.
- **3**. Make sure that the thermal profile appears as follows:

4. Set the Sample Volume to $25 \ \mu L$ and make sure that the 9600 Emulation box is selected.

5. Selecting the 9600 Emulation box reduces the ramp rate.

Thermal Cycler Protocol			
Thermal Profile Auto I	ncrement Ramp Rate Data Collection		
Stage 1	Stage 2		
	Repeats 40		
95.0	95.0 0:15 1:00	•	
Add Cycle Add Delete Step A	d Hold Add Step	Sample Volume (μι): 25 © 9600 Emulation Set the vol 25 μL	.ume to
		H Make sure that this box is selected	

- **6.** Make sure that the default settings are kept on the remaining tabs:
 - Auto Increment
 - Ramp Rate
 - Data Collection

Save the plateBefore running the reaction plate, save the plate document as an ABI Prism SDS SingledocumentPlate (*.sds) file.

Note: To save the document as a template, see "Set up a plate document template" on page 48.

To save the plate document:

- 1. Select File > Save As.
- 2. For Files of Type, select ABI Prism SDS Single Plate (*.sds).
- 3. Navigate to where you want to save the plate document file.
- 4. In the File Name field, enter a name for the plate document.
- 5. Click Save.

Set up a plate document template

Purpose	A plate document template reduces the time required to set up a plate document. This section describes how to create an SDS Template Document (*.sdt) set up for running Quantifiler [™] Kit assays.
Template settings	In addition to plate document settings (assay and container), templates can contain:
	Assay-specific detectors
	• Well assignments for quantification standards, with detectors, tasks, and quantity
	Well assignments for unknown samples, with detectors and tasks
	 Instrument settings: thermal cycler conditions and reaction volume settings.

Create a plate document template

This procedure assumes that you have created the detectors for running reactions using the Quantifiler[™] Kits (page 43).

To create a plate document template:

- 1. If the SDS software is not already started, select **Start ▶ Programs ▶ Applied Biosystems ▶ SDS 2.0**.
- 2. Select **File New**, then complete the New Document dialog box:

New Document				
Assay:	Absolute Quantification (Standard Curve)	•		
Container:	96 Wells Clear Plate	•		
Template:	Blank Template	•		
	Browse			
Barcode:				
?	ОК Са	ncel		

- 3. Apply the desired template settings to the plate document:
 - Copy detectors (page 45)
 - Apply detectors for standards (page 45)
 - Apply detectors for unknown samples (page 46)
 - Set thermal cycler conditions (page 47)
- 4. Select **File** > **Save As** and complete the Save As dialog box:
 - a. For Files of Type, select ABI Prism SDS Template Document (*.sdt).
 - b. Locate and select the Templates folder within the software folder:
 - **X:Program Files** ► **Applied Biosystems** ► **7900HTSDS** ► **Templates**, where X is the hard drive on which the SDS software is installed.

Note: Saving the template file in the Templates folder makes it available in the Template drop-down list of the New Document dialog box (see step 2 in "Create a plate document template" on page 49).

- c. Enter a name for the template. For example, enter Quantifiler Template.
- d. Click Save.

Create a plate document from a template

After you create a template, you can use it to create a plate document.

To create a plate document from a template:

- 1. If the SDS software is not already started, select **Start ▶ Programs ▶ Applied Biosystems ▶ SDS 2.0**.
- **2.** Select **File** ▶ **New** and in the New Document dialog box and make the following selections:
 - For Assay, select **Absolute Quantitation**.
 - For Container, select 96-Well Clear Plate.
 - For Template, select an appropriate template from the list.

Note: If the template is not available in the list, click Browse to locate and select an appropriate template.

- **3.** Complete the plate document setup:
 - Copy detectors (page 45)
 - Apply detectors for standards (page 45)
 - Apply detectors for unknown samples (page 46)
 - Set thermal cycler conditions (page 47)

Note: The tasks that you perform vary according to which settings were defined in the template.

4. Save the plate document (page 48).

Note: For Files of Type, select ABI Prism SDS Single Plate (*.sds).

PCR Amplification

_	 Prepare the DNA quantification standard	
Prepare the	e DNA quantification standard	
Required materials	 Pipettors Pipette tips Quantifiler[™] Human DNA Standard Note: The same standard can be used for both Quantifiler[™] Kits. 	
	 I₁₀E_{0.1} buffer: 10 mM Tris-HCl (pH 8.0) 0.1 mM Na₂EDTA 20 μg/mL glycogen (optional) Note: If you use T₁₀E_{0.1} buffer with glycogen, you can store the DNA quantification standards for up to 2 weeks at 2 to 8 °C. 	
Guidelines for calculating the standards dilutions series	 The standard dilution series example shown in Table 10 is suitable for general use. We recommend: Three-fold dilution series with eight concentration points in the standard series for each assay Minimum input volume of 10 µL DNA for dilutions (to ensure accuracy of pipetting) 	
Standards diluti series example	Table 10 shows an example of one standards dilution series with the concentrations ranging from 50 ng/ μ L (Std. 1) to 0.023 ng/ μ L, or 23 pg/ μ L (Std. 8). A sample at the lowest concentration (2 μ L per reaction) contains on average 14 to 16 copies of a diploid single-copy locus and 7 to 8 copies of a haploid single-copy locus. Table 10 Standards dilution series example	

Standard	Concentration (ng/µL)	Example Amounts	Minimum Amounts	Dilution Factor
Std. 1	50.000	50 μL [200 ng/μL stock] + 150 μL T ₁₀ E _{0.1} /glycogen buffer	10 μL [200 ng/μL stock] + 30 μL Τ ₁₀ Ε _{0.1} buffer	4×
Std. 2	16.700	50 μL [Std. 1] + 100 μL Τ ₁₀ Ε _{0.1} /glycogen buffer	10 μL [Std. 1] + 20 μL Τ ₁₀ Ε _{0.1} buffer	3×