Get tips on using EasySep™ Human B Cell Isolation Kit to perform Cell Isolation B cell
Get tips on using StemSep™ Human CD34 Positive Selection Cocktail to perform Cell Isolation CD34+ cells
Get tips on using MACSprep™ Chimerism CD34 MicroBead Kit, human to perform Cell Isolation CD34+ cells
Get tips on using Human/Mouse/Rat/Canine ALCAM/CD166 Antibody to perform Immunohistochemistry Mouse - CD166 / ALCAM
Get tips on using Brilliant Violet 510™ anti-human HLA-DR Antibody to perform Flow cytometry Anti-bodies Human - HLA-DR
Get tips on using PerCP-Cy™5.5 Mouse Anti-Human HLA-DR to perform Flow cytometry Anti-bodies Human - HLA-DR
Get tips on using PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody to perform Flow cytometry Anti-bodies Human - CD184/CXCR4
A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment