Microarray Comperative genomic hybridization Human

- Found 3592 results

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human M245 MCL-1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human T47-D GNB1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human HeLa BART/ARL2BP

Cellular assays Cell Isolation Human Mesenchymal Stem Cell

Get tips on using CD163 Antibody, anti-human, PE-Vio® 770, REAfinity™ to perform Flow cytometry Anti-bodies Human - CD163

Products Miltenyibiotec CD163 Antibody, anti-human, PE-Vio® 770, REAfinity™

Get tips on using Alexa Fluor® 488 anti-human CD127 (IL-7Rα) Antibody to perform Flow cytometry Anti-bodies Human - CD127

Products BioLegend Alexa Fluor® 488 anti-human CD127 (IL-7Rα) Antibody

Get tips on using Alexa Fluor® 488 anti-human CD15 (SSEA-1) Antibody to perform Flow cytometry Anti-bodies Human - CD15

Products BioLegend Alexa Fluor® 488 anti-human CD15 (SSEA-1) Antibody

Get tips on using EasySep™ Human CD33 Positive Selection Kit II to perform Cell Isolation Monocyte

Products STEMCELL technologies EasySep™ Human CD33 Positive Selection Kit II

Get tips on using Monoclonal Mouse Anti-Human Hepatocyte (Concentrate) Clone OCH1E5 to perform Immunohistochemistry Mouse - Hepatocyte

Products Agilent Technologies Monoclonal Mouse Anti-Human Hepatocyte (Concentrate) Clone OCH1E5

Get tips on using Human/Mouse/Rat Activin A Quantikine ELISA Kit to perform ELISA Rat - Activin

Products R&D Systems Human/Mouse/Rat Activin A Quantikine ELISA Kit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms