Get tips on using Enzo BioArray™ Single-Round RNA Amplification and Biotin Labeling System to perform Microarray Rhesus monkey - Brain tissue Target preparation (RNA amplification + labeling)
Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - Microglia
Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - Neuro 2a
Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - BV-2
Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - ESCs (Embryonic Stem Cells)
Get tips on using "Illumina ™ TotalPrep ™ RNA Amplification Kit + Bio-16-UTP (10 mM) to perform Microarray RNA amplification & Labeling - Mouse cochlaea Biotin
Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - Bone marrow-derived macrophages (BMDMs)
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment