PCR Preamplification of cDNA

- Found 11558 results

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Rat Retinal ganglion cells (RGCs)

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Rat Trigeminal ganglia tissue

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Rat INS-1 832/13

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Human HT-1376 (urinary bladder cell line)

I am currently using a recombinant protein which shows metal-dependent DNase activity. Is it possible to pinpoint the source of the DNase activity after protein purification? More specifically, can I ensure that the DNase activity is not because of nuclease contamination from the E.coli that might have persisted and passed with the protein of interest during purification?

Discussions Is a bacterial nuclease contamination possible during protein purification?

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type PC-3

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type PC-9

Reporter gene assays are designed to test the regulation of the expression of a gene of interest. This is usually done by linking the promoter of the gene of interest with a gene such as a firefly luciferase, which can be easily detected by addition of luciferin that leads to an enzymatic reaction to produce luminescence. The enzymatic reaction can be correlated to the expression of the gene of interest. Another luciferase gene that can be used is Renilla luciferase. For an appropriate luciferase assay: 1. the reporter should express uniformly in all cells, 2. specifically respond to effectors that the assay intends to monitor, 3. have low intrinsic stability to quickly reflect transcriptional dynamics. It is important to have an equal number of cells plated in each testing condition to avoid any incorrect readouts. Reporter assays could be single or dual reporter assays. The reporter could be both luciferases. Most dual-luciferase assays involve adding two reagents to each sample and measuring luminescence following each addition. Adding the first reagent activates the first luciferase reporter reaction; adding the second reagent extinguishes first luciferase reporter activity and initiates the second luciferase reaction. Dual-luciferase assays have some advantages, including 1. reduces variability, 2. reduces background, 3. normalizes differences in transfection efficiencies between samples.

Cellular assays Reporter gene assay β-galactosidase substrates SK-Hep-1

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type HUVEC

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type HeLa

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms