Protein Expression Eukaryotic cells Y. lipolytica

- Found 7230 results

Get tips on using Mouse CRP / C Reactive Protein / PTX1 PicoKine™ ELISA Kit to perform ELISA Mouse - C-Reactive Protein/CRP

Products BosterBio Mouse CRP / C Reactive Protein / PTX1 PicoKine™ ELISA Kit

Get tips on using Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5 to perform Immunohistochemistry Rat - GFAP

Products Merck Millipore Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5

Get tips on using Mouse Retinol Binding Protein 4 ELISA Kit (ab202404) to perform ELISA Mouse - RBP4

Products Abcam Mouse Retinol Binding Protein 4 ELISA Kit (ab202404)

I am currently using a recombinant protein which shows metal-dependent DNase activity. Is it possible to pinpoint the source of the DNase activity after protein purification? More specifically, can I ensure that the DNase activity is not because of nuclease contamination from the E.coli that might have persisted and passed with the protein of interest during purification?

Discussions Is a bacterial nuclease contamination possible during protein purification?

Get tips on using anti-p62 Protein, C-Terminal Specific Polyclonal Antibody to perform Autophagy assay cell type - MDA-MB-231

Products ARP American Research Products anti-p62 Protein, C-Terminal Specific Polyclonal Antibody

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Human chondrocytes

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Human astrocytes

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Human osteoblasts

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Rat astrocytes

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Rat microglia

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms