The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion PC-3 AGR3
Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion PC-3 AGR2
Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion MCF-7 AHR
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Get tips on using QuikChange II XL Site-Directed Mutagenesis Kit, 10 Rxn to perform Site Directed Mutagenesis (SDM) Human - Deletion K562 c-Myb gene
Get tips on using Site-Directed Mutagenesis Kit to perform Site Directed Mutagenesis (SDM) Human - Point mutation 786-O REGγ
Get tips on using Q5® Site-Directed Mutagenesis Kit to perform Site Directed Mutagenesis (SDM) Mouse - L929 capsid protein
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment