Site Directed Mutagenesis (SDM) Human Deletion HepG2

- Found 6411 results

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA.

RNA RNA isolation / purification Tissue Human Veins

Get tips on using StemSep™ Human CD34 Positive Selection Cocktail to perform Cell Isolation CD34+ cells

Products STEMCELL technologies StemSep™ Human CD34 Positive Selection Cocktail

Get tips on using Human NRG1 beta 1 ELISA Kit (ab100614) to perform ELISA Human - NRG1

Products Abcam Human NRG1 beta 1 ELISA Kit (ab100614)

Get tips on using Human CCL2/MCP-1 Quantikine ELISA Kit to perform ELISA Human - MCP1

Products R&D Systems Human CCL2/MCP-1 Quantikine ELISA Kit

Get tips on using Human MPO/Myeloperoxidase PicoKine™ ELISA Kit to perform ELISA Human - MPO

Products BosterBio Human MPO/Myeloperoxidase PicoKine™ ELISA Kit

Get tips on using Human EGFR In-Cell ELISA Kit (ab126419) to perform ELISA Human - EGFR

Products Abcam Human EGFR In-Cell ELISA Kit (ab126419)

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human intestinal stem cells/organoids

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human salivary gland stem cells

Get tips on using Pan Monocyte Isolation Kit, human to perform Cell Isolation Monocyte

Products Miltenyibiotec Pan Monocyte Isolation Kit, human

Get tips on using Classical Monocyte Isolation Kit, human to perform Cell Isolation Monocyte

Products Miltenyibiotec Classical Monocyte Isolation Kit, human

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms