Get tips on using Mouse Decorin ELISA Kit to perform ELISA Mouse - Decorin
Get tips on using Mouse Osteopontin/OPN Antibody to perform Immunohistochemistry Mouse - Spp1/OPN
Get tips on using TLR10 shRNA (h) Lentiviral Particles to perform shRNA gene silencing Human - THP-1 TLR10
Get tips on using TLR10 shRNA (h) Lentiviral Particles to perform shRNA gene silencing Human - THP-1 TLR10
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.
Get tips on using PE Mouse Anti-Human CD26 Clone M-A261 to perform Flow cytometry Anti-bodies Human - CD26
Get tips on using pSilencer™ 4.1-CMV neo to perform shRNA gene silencing Human - SiHa AEG-1
Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment