siRNA / miRNA gene silencing Rat Retinal stem cells

- Found 8304 results

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - rat tendon-derived stem cells

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using Mesenchymal Stem Cell Osteogenic Differentiation Medium to perform Stem cell Differentiation media human umbilical mesenchymal stem cells (hUMSCs) differentiation into osteogenic cells

Products Cyagen US Inc. Mesenchymal Stem Cell Osteogenic Differentiation Medium

Get tips on using Rat Retinol binding protein 4,RBP-4 ELISA Kit to perform ELISA Rat - RBP4

Products Cusabio Rat Retinol binding protein 4,RBP-4 ELISA Kit

Get tips on using Stemline® Neural Stem Cell Expansion Medium to perform Stem cell culture media Human Fetal brain-derived neural stem cells

Products Sigma-Aldrich Stemline® Neural Stem Cell Expansion Medium

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human WA09 hESC

Get tips on using mirVana™ miRNA Isolation Kit, with phenol to perform RNA isolation / purification Cells - primary rat aortic smooth muscle cells

Products Thermo Fisher Scientific mirVana™ miRNA Isolation Kit, with phenol

Get tips on using Ad-Sal-shRNA to perform shRNA gene silencing Rat - H9c2 salusin-β

Products Genomeditech Co. Ad-Sal-shRNA

Get tips on using Ad-Sal-shRNA to perform shRNA gene silencing Rat - WKY Salusin-β

Products Genomeditech Co. Ad-Sal-shRNA

Get tips on using Glut1 siRNA and shRNA Plasmids (h) to perform siRNA / RNAi /miRNA transfection Human Cells - HT-1376 GLUT1

Products Santa Cruz Biotechnology Glut1 siRNA and shRNA Plasmids (h)

Get tips on using CD74 siRNA and shRNA Plasmids (h) to perform siRNA / RNAi /miRNA transfection Human Cells - HT-1376 CD74

Products Santa Cruz Biotechnology CD74 siRNA and shRNA Plasmids (h)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms