Get tips on using ON-TARGET plus Mouse Becn1 (56208) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Mouse - 4T1 BECN-1
Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - RAW 264.7
Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - SH-SY5Y
Get tips on using SMARTpool: ON-TARGETplus Hipk2 siRNA to perform siRNA / miRNA gene silencing Mouse - Glomerular mesangial cells HIPK2 Polymer / Lipid delivery
Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - MIA PaCa-2
Get tips on using β-Galactosidase Reporter Gene Staining Kit to perform Reporter gene assay β-galactosidase substrates - mouse embryo tissue
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment