DNA methylation profiling Gene specific profiling MRC-5

- Found 5468 results

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Eukaryotic cells S. frugiperda human MRP4-his6

Get tips on using TriDye™ Ultra Low Range DNA Ladder to perform DNA Ladder Low Range

Products New England BioLabs TriDye™ Ultra Low Range DNA Ladder

Get tips on using 100 bp DNA Ladder Ready to Load to perform DNA Ladder 100 bp

Products Solis Biodyne 100 bp DNA Ladder Ready to Load

Get tips on using Quick-Load® 100 bp DNA Ladder to perform DNA Ladder 100 bp

Products New England BioLabs Quick-Load® 100 bp DNA Ladder

Get tips on using Quick-Load® 100 bp DNA Ladder to perform DNA Ladder 100 bp

Products New England BioLabs Quick-Load® 100 bp DNA Ladder

Get tips on using TriDye™ 1 kb Plus DNA Ladder to perform DNA Ladder 1 kb

Products New England BioLabs TriDye™ 1 kb Plus DNA Ladder

Get tips on using Quick-Load® 1 kb DNA Ladder to perform DNA Ladder 1 kb

Products New England BioLabs Quick-Load® 1 kb DNA Ladder

Get tips on using TrackIt™ 1 Kb Plus DNA Ladder to perform DNA Ladder 1 kb

Products Thermo Fisher Scientific TrackIt™ 1 Kb Plus DNA Ladder

Get tips on using GD 1Kb Plus DNA Ladder RTU Ladder to perform DNA Ladder 1 kb

Products MyBioSource.com GD 1Kb Plus DNA Ladder RTU Ladder

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Mouse Point mutation L929 SigmaR1 gene (σ1)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms