ChIP acH3 Rat Sheep BEF Tag

- Found 4688 results

Get tips on using pET20b-chIL-7/H to perform Protein Expression Prokaryotic cells - E. coli chicken IL-7

Products Fei Zhong, Laboratory of Molecular Virology and Immunology, Coll pET20b-chIL-7/H

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human A431 RCP/RAB11FIP1

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human MDA-MB-231 RAD51

Get tips on using pHUE -Ls-AChBP to perform Protein Expression Prokaryotic cells - E. coli AChBPs

Products Richard J. Lewis, Centre for Pain Research, Institute for Molecu pHUE -Ls-AChBP

Get tips on using AChE shRNA Plasmids (h) to perform shRNA gene silencing Human - TF‐1 AChE

Products Santa Cruz Biotechnology AChE shRNA Plasmids (h)

Get tips on using LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation to perform Live / Dead assay mammalian cells - rat testicular tissue

Products Thermo Fisher Scientific LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation

Gene silencing through the use of small interfering RNA (siRNA) has become a primary tool for identifying disease-causing genes. There are several aspects for preparing and delivering effective siRNA to knockdown a target gene. The length of siRNA should be 21–23nt long with G/C content 30–50%. If a validated siRNA sequence for your target gene is not available, use siRNA generated against the entire target gene ORF. Always work with two or three different siRNA constructs to get reliable results. If you are not sure how much siRNA to use for a given experiment, start with a transfection concentration of 10-50 nM and use siRNA-specific transfection reagent to ensure efficient siRNA delivery in a wide range of cells.

RNA siRNA / miRNA gene silencing Mouse BV2 BECN1

The process of RNA extraction from bacteria, in general, involves an RNA-protective, effective lysis of bacterial cell wall (which may pose difficulties). EDTA promotes loss of outer membrane to provide lysozyme with access to peptidoglycan. Another common method for cell wall lysis is mechanical disruption using a homogenizer (applied for gram-positive bacteria and some strains of gram-negative bacteria). Following lysis, it is necessary to disrupt protein-nucleic acid interactions, which can be achieved by adding sodium dodecyl sulfate (SDS). Next step involves using phenol-chloroform-isoamyl alcohol extraction, where RNA can be obtained from the bottom organic phase, the top phase consists of DNA and the interphase contains proteins. Isoamyl alcohol is an inert and optional addition to this mixture and is added as an anti-foaming reagent to reduce the interphase. Following RNA extraction, the samples should be checked for its quality by gel electrophoresis (23S and 16S rRNAs and 5s rRNA and tRNA bands) or UV spectrophotometric or fluorescence methods.

RNA RNA isolation / purification Cells primary rabbit aortic endothelial cells

Get tips on using pX330-U6-Chimeric_BB-CBh-hSpCas9 to perform CRISPR Human - Activation RANKL

Products Addgene pX330-U6-Chimeric_BB-CBh-hSpCas9

Get tips on using pX330-U6-Chimeric_BB-CBh-hSpCas9 to perform CRISPR Mouse - Deletion RAW 264.7 Nfatc1

Products Addgene pX330-U6-Chimeric_BB-CBh-hSpCas9

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms