Analysis of DNA fragments

- Found 4371 results

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type N27 dopaminergic cells

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type Proximal tubular cells (rPT)

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type RPE-J cells

I intend to use iScript cDNA Synthesis Kit in order to synthesize cDNA for qPCR. I have confirmed that my RNA is pure however, according to my extraction protocol I have suspended the RNA in TE buffer containing 1mM EDTA. Will the presence of EDTA have an effect on cDNA synthesis?

Discussions Will presence of EDTA effect cDNA synthesis

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Differentiation of Human iPSC into Human Neuroepithelial cells

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Differentiation of Human PSC into Neural progenitor cells

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include: 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi have been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human Islets of langerhans Negative control (scrambled) lentiviral particles

Western blotting is a widely used technique to size separate proteins from a pool of cell or tissue lysates. The technique has 4 major steps: a) gel electrophoresis, b) blocking and treatment with antigen specific antibody, c) treatment with secondary antibody and finally d) detection and visualization. Though western blotting is a widely used technique, detection of specific proteins depends on several factors, the major ones are antibody concentration, incubation time and washing steps. Key points for obtaining clean blots are: always prepare fresh buffer solutions and optimize antibody concentration. Given the advent of high-throughput protein analysis and a push to limit the use of lab consumables, onestep antibodies are developed which recognise protein of interest and also contain a detection label.

Proteins Western blotting Cytochrome C

Western blotting is a widely used technique to size separate proteins from a pool of cell or tissue lysates. The technique has 4 major steps: a) gel electrophoresis, b) blocking and treatment with antigen specific antibody, c) treatment with secondary antibody and finally d) detection and visualization. Though western blotting is a widely used technique, detection of specific proteins depends on several factors, the major ones are antibody concentration, incubation time and washing steps. Key points for obtaining clean blots are: always prepare fresh buffer solutions and optimize antibody concentration. Given the advent of high-throughput protein analysis and a push to limit the use of lab consumables, onestep antibodies are developed which recognise protein of interest and also contain a detection label.

Proteins Western blotting EGFR

Western blotting is a widely used technique to size separate proteins from a pool of cell or tissue lysates. The technique has 4 major steps: a) gel electrophoresis, b) blocking and treatment with antigen specific antibody, c) treatment with secondary antibody and finally d) detection and visualization. Though western blotting is a widely used technique, detection of specific proteins depends on several factors, the major ones are antibody concentration, incubation time and washing steps. Key points for obtaining clean blots are: always prepare fresh buffer solutions and optimize antibody concentration. Given the advent of high-throughput protein analysis and a push to limit the use of lab consumables, onestep antibodies are developed which recognise protein of interest and also contain a detection label.

Proteins Western blotting β-Actin

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms