Get tips on using Rat ICAM-1 PicoKine™ ELISA Kit to perform ELISA Rat - ICAM-1/CD54
Get tips on using Rat ICAM-1/CD54 Quantikine ELISA Kit to perform ELISA Rat - ICAM-1/CD54
Get tips on using FuGENE® HD Transfection Reagent to perform DNA transfection Mammalian cells - Immortalized cell lines H9C2
Get tips on using CellTiter-Glo® Luminescent Cell Viability Assay to perform Live / Dead assay mammalian cells - H9C2
ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.
ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.
Get tips on using Rat C-Reactive Protein/CRP DuoSet ELISA to perform ELISA Rat - C-Reactive Protein/CRP
When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment