DNA methylation profiling Gene specific profiling Mouse muscle stem cells

- Found 9321 results

Get tips on using 1kb DNA Step Ladder to perform DNA Ladder 1 kb

Products Promega 1kb DNA Step Ladder

Get tips on using 100bp DNA Step Ladder to perform DNA Ladder 100 bp

Products Promega 100bp DNA Step Ladder

Get tips on using 200bp DNA Step Ladder to perform DNA Ladder 200 bp

Products Promega 200bp DNA Step Ladder

Get tips on using Micro BCA™ Protein Assay Kit to perform Protein quantification Mammalian cells - Human pluripotent stem cells

Products Thermo Fisher Scientific Micro BCA™ Protein Assay Kit

Get tips on using Pierce™ BCA Protein Assay Kit to perform Protein quantification Mammalian cells - Human pluripotent stem cells

Products Thermo Fisher Scientific Pierce™ BCA Protein Assay Kit

Get tips on using Mouse Osteopontin/OPN Antibody to perform Immunohistochemistry Mouse - Spp1/OPN

Products R&D system, Minneapolis, MN, USA Mouse Osteopontin/OPN Antibody

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human HCT-116 DNMT3B

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Human A549 DAB2

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Fish fundulus heteroclitus Cyanine-3 / Cyanine-5

Get tips on using jetPEI® DNA transfection, HTS application to perform DNA transfection Mammalian cells - Immortalized cell lines Huh7

Products Polyplus transfections jetPEI® DNA transfection, HTS application

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms