Get tips on using Human Thrombopoietin R/Tpo R PE-conjugated Antibody to perform Flow cytometry Anti-bodies Human - CD110/Thrombopoietin R
Get tips on using Human IL-3R alpha /CD123 PE-conjugated Antibody to perform Flow cytometry Anti-bodies Human - CD123/IL3-R
Get tips on using PE-Cy™7 Mouse Anti-Human CD123 to perform Flow cytometry Anti-bodies Human - CD123/IL3-R
Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform Microarray Human - Precision cut lung slices Expression array
Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform Microarray Gene expression arrays - Human endometrial stromal cells Biotin
The kit works good in human tissue biopsy samples even with minimum amount of tissue.
Get tips on using Anti-Human CD56 (NCAM) APC-eFluor® 780 to perform Flowcytometry CD56 (NCAM) - Mouse / IgG1, kappa Human APC-eFluor 780
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment