siRNA / RNAi /miRNA transfection Human Cells Jurkat cells

- Found 9049 results

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGFš›ƒ1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Mouse muscle satellite cells

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGFš›ƒ1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media hAdipose derived stem cells

Get tips on using LIVE/DEADā„¢ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MCF-7 human breast cancer cells

Products Thermo Fisher Scientific LIVE/DEADā„¢ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells to perform Live / Dead assay mammalian cells - FE002-SK2 human skin progenitor cells

Products Biotium Viability/Cytotoxicity Assay Kit for Animal Live & Dead Cells

Get tips on using SilencerĀ® Select_Mapk14/p38 siRNA(r) to perform siRNA / miRNA gene silencing Rat - NRVM( Mapk14/p38

Products Thermo Fisher Scientific SilencerĀ® Select_Mapk14/p38 siRNA(r)

Get tips on using siGENOME Rat Arhgap35 (306400) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Rat - MTLn3 p190RhoGAP/Arhgap35

Products Horizon Discovery Ltd. siGENOME Rat Arhgap35 (306400) siRNA - SMARTpool

Get tips on using siGENOME Rat Sod2 (24787) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Rat - NRK MnSOD/Sod2

Products Horizon Discovery Ltd. siGENOME Rat Sod2 (24787) siRNA - SMARTpool

Get tips on using siGENOME Mouse Sod2 (20656) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Mouse - RGC-5 Sod2

Products Horizon Discovery Ltd. siGENOME Mouse Sod2 (20656) siRNA - SMARTpool

Get tips on using ON-TARGETplus Rat Dlc1 (58834) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Rat - MTLn3 Dlc1

Products Horizon Discovery Ltd. ON-TARGETplus Rat Dlc1 (58834) siRNA - SMARTpool

Get tips on using ON-TARGETplus Rat Rhoa (117273) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Rat - MTLn3 Rhoa

Products Horizon Discovery Ltd. ON-TARGETplus Rat Rhoa (117273) siRNA - SMARTpool

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms