shRNA gene silencing Human Neuroblastoma cells (SH-SY5Y) Connexin 43

- Found 8820 results

Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - RAW 264.7

Products Sigma-Aldrich β-Gal Reporter Gene Assay, chemiluminescent

Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - MIA PaCa-2

Products Sigma-Aldrich β-Gal Reporter Gene Assay, chemiluminescent

Get tips on using β-Galactosidase Reporter Gene Staining Kit to perform Reporter gene assay β-galactosidase substrates - mouse embryo tissue

Products Sigma-Aldrich β-Galactosidase Reporter Gene Staining Kit

Get tips on using ON-TARGETplus Rat Snap23 (64630) siRNA - Set of 4 to perform siRNA / miRNA gene silencing Rat - RBL-2H3 Snap23

Products Horizon Discovery Ltd. ON-TARGETplus Rat Snap23 (64630) siRNA - Set of 4

Get tips on using GeneChip® Human Genome U133 Plus 2.0 Array to perform Microarray Gene expression arrays - Rhesus monkey brain tissue Biotin

Products Thermo Fisher Scientific GeneChip® Human Genome U133 Plus 2.0 Array

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Rat mesothelium Satin cocktail

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse dorsal skin Biotin

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse brain tissue Biotin

Get tips on using Silencer® Select Negative Control No 1 siRNA to perform siRNA / miRNA gene silencing Mouse - siRNA negative control polymer / lipid

Products Thermo Fisher Scientific Silencer® Select Negative Control No 1 siRNA

Get tips on using SignalSilence® NF-κB p65 siRNA I #6261 to perform siRNA / miRNA gene silencing Rat - H9c2 NF-κB RelA (p65)

Products Cell Signaling Technology SignalSilence® NF-κB p65 siRNA I #6261

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms