CRISPR Mouse Deletion ES (embryonic stem) cells

- Found 8157 results

Get tips on using Monoclonal Mouse Anti-Villin (Autostainer Link 48) Clone 1D2 C3 to perform Immunohistochemistry Human - Villin

Products Agilent Technologies Monoclonal Mouse Anti-Villin (Autostainer Link 48) Clone 1D2 C3

Get tips on using Monoclonal Mouse Anti-Human Progesterone Receptor (Concentrate) Clone PgR 1294 to perform Immunohistochemistry Human - PR

Products Agilent Technologies Monoclonal Mouse Anti-Human Progesterone Receptor (Concentrate) Clone PgR 1294

Get tips on using Monoclonal Mouse Anti-Human CA 125 (Dako Omnis) Clone M11 to perform Immunohistochemistry Human - CA125

Products Agilent Technologies Monoclonal Mouse Anti-Human CA 125 (Dako Omnis) Clone M11

Get tips on using Monoclonal Mouse Anti-Human CDX2 (Dako Omnis) Clone DAK-CDX2 to perform Immunohistochemistry Human - CDX2

Products Agilent Technologies Monoclonal Mouse Anti-Human CDX2 (Dako Omnis) Clone DAK-CDX2

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse mammary tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse skin tissue Biotin

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse dorsal skin Biotin

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Mouse brain tissue Biotin

Get tips on using Monoclonal Mouse Anti-Villin (Autostainer Link 48) Clone 1D2 C3p to perform DNA Damage Assay U266 -

Products NSJ Bioreagents Monoclonal Mouse Anti-Villin (Autostainer Link 48) Clone 1D2 C3p

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms