shRNA gene silencing Human HEK 293T

- Found 5598 results

Get tips on using Human Fibronectin DuoSet ELISA to perform ELISA Human - Fibronectin

Products R&D Systems Human Fibronectin DuoSet ELISA

Get tips on using Human Decorin ELISA Kit to perform ELISA Human - Decorin

Products Sigma-Aldrich Human Decorin ELISA Kit

Get tips on using Human Decorin DuoSet ELISA to perform ELISA Human - Decorin

Products R&D Systems Human Decorin DuoSet ELISA

Get tips on using Human FGF-10 Antibody to perform Immunohistochemistry Human - FGF-10

Products R&D Systems Human FGF-10 Antibody

Get tips on using Human Dkk-1 ELISA to perform ELISA Human - Dkk-1

Products Raybiotech Human Dkk-1 ELISA

A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.

Cellular assays Angiogenesis assay human hESC-EC

Get tips on using ElectraSense 4x2K/12K to perform Microarray Gene expression arrays - Human whole blood cells Biotin

Products Custom Array ElectraSense 4x2K/12K

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human myogenic progenitor cells

Cellular assays Cell line authentication Human iPSC cells derived from human dermal fibroblasts

Get tips on using SurePrint Human miRNA Microarrays to perform Microarray Human - Endometrial stromal cells miRNA-expression array (labelled)

Products Agilent Technologies SurePrint Human miRNA Microarrays

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms