Microarray Gene expression arrays Mouse

- Found 5466 results

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGFš›ƒ1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Mouse trophoblast stem cells

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGFš›ƒ1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Mouse muscle satellite cells

Hello Iam a phd student in pharmacy and i want to know if this technology is suitable to knockout or silencing part of the gas5 gene in BV2 cells please

Discussions Bv2 GAS5 gene silencing

Get tips on using Monoclonal Mouse Anti-Human Cytokeratin (Concentrate) Clone AE1/AE3 to perform Immunohistochemistry Mouse - Cytokeratin

Products Agilent Technologies Monoclonal Mouse Anti-Human Cytokeratin (Concentrate) Clone AE1/AE3

Get tips on using Purified Rat Anti-Mouse CD24 Clone M1/69 (RUO) to perform Immunohistochemistry Mouse - CD24

Products BD Biosciences Purified Rat Anti-Mouse CD24 Clone M1/69 (RUO)

Get tips on using Purified Rat Anti-Mouse CD24 Clone M1/69 (RUO) to perform Immunohistochemistry Mouse - CD24

Products BD Biosciences Purified Rat Anti-Mouse CD24 Clone M1/69 (RUO)

Get tips on using Mouse GFR alpha-3/GDNF R alpha-3 Antibody to perform Immunohistochemistry Mouse - GfrĪ±3

Products R&D system, Minneapolis, MN, USA Mouse GFR alpha-3/GDNF R alpha-3 Antibody

Get tips on using Human/Mouse/Rat Total HSP70/HSPA1A DuoSet IC ELISA to perform ELISA Mouse - HSP70

Products R&D Systems Human/Mouse/Rat Total HSP70/HSPA1A DuoSet IC ELISA

Get tips on using Amino Allyl MessageAmpā„¢ II aRNA Amplification Kit to perform Microarray RNA amplification & Labeling - Fish fundulus heteroclitus Cyanine-3 / Cyanine-5

Products Thermo Fisher Scientific Amino Allyl MessageAmpā„¢ II aRNA Amplification Kit

A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.

Cellular assays Angiogenesis assay mouse spleen-derived EPCs

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms