siRNA / miRNA gene silencing Rat MTLn3 (rat mammary adenocarcinoma breast cancer cell line)

- Found 8613 results

Short hairpin or small hairpin RNA (shRNA) is artificial RNA, which has a hairpin loop structure, and uses inherent microRNA (miRNA) machinery to silence target gene expression. This is called RNA interference (RNAi). These can be delivered via plasmids or viral/bacterial vectors. Challenges in shRNA-mediated gene silencing include 1. Off-target silencing, 2. Packaging shRNA encoding lentivirus, and 3. Stable transduction in cells. RNAi has been designed to have anywhere from 19-27 bs, but the most effective design has 19 bp. In case commercial shRNAs are not available, potential target sites can be chosen within exon, 5’- or 3’ UTR, depending on which splice variants of the gene are desired. One should use the latest algorithms and choose at least two different sequences, targeting different regions, in order to have confidence in overcoming off-target effects. A BLAST search after selecting potential design will eliminate potential off-target sequences. For the second challenge, sequencing the vector using primers for either strand (50-100 bp upstream) is suggested, along with using enzymatic digestion on agarose gel for the vector. Next, once the shRNA-containing vector is packaged in a virus, it is important to check the viral titer before transduction. Finally, using a marker in the lentiviral vector (fluorescent protein or antibiotic resistance), along with qPCR for target gene expression can help in determining the efficacy of transduction and shRNA on its target site.

RNA shRNA gene silencing Human TF‐1 GATA‐1
Fenozol Product

Get tips on using Fenozol to perform siRNA / miRNA gene silencing Human - BOSC23

Products A&A Biotechnology Fenozol

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells Cal 27 cells Polymer / lipid

The RNA interference (RNAi) is used to inhibit gene expression or translation, by neutralizing targeted mRNA molecules. Two types of RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) play a central role in RNAi. Few points have to considered to increase the transfection efficiency of siRNA. Always use healthy, actively dividing cells to maximize transfection efficiency. The confluency of cells should be between 50-70%. Always use the most appropriate siRNA concentration to avoid off-target effects and unwanted toxic side effects. Positive and negative controls should be used for each and every experiment to determine transfection efficiency.

RNA siRNA / RNAi /miRNA transfection Human Cells A549 & LTEP-a-2 Lipofectamine

RNA-Seq is a method to sequence RNA by applying Next Generation Sequencing (NGS). The quality of RNA is critical for the success of RNA-Seq. The integrity of RNA is measured by the RNA integrity number (RIN). RIN is computed from RNA electrophoresis and electropherogram profiles (the peak area of the 28S rRNA should be approximately twice the peak area of the 18S rRNA). If you get the RIN value lower than 7, the possibility of getting the low quality of RNA-seq data is high. To get a high quality RNA, it is better to work with fresh samples or snap-freeze the tissues in liquid nitrogen as quickly as possible and store them at -80°C until further use. Make sure designated areas and all your filter tips, microfuge tubes, plastic, and glassware are RNase-free.

RNA RNA sequencing Human HT-1376 (urinary bladder cell line)

Get tips on using Stealth siRNA_GATA2 to perform siRNA / miRNA gene silencing Human - LAD2 GATA2

Products Thermo Fisher Scientific Stealth siRNA_GATA2

Get tips on using HiPerFect Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - IEC Cationic lipid based

Products Qiagen HiPerFect Transfection Reagent

Get tips on using HiPerFect Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - C6 Cationic lipid based

Products Qiagen HiPerFect Transfection Reagent

I would like to regulate the expression of a gene and in order to do that, I have purchased specific siRNA. After optimizing my transfection protocol and using electroporation I have achieved a 60-70% reduction of the gene of interest. However, I cannot observe a significant reduction of mRNA expression but only a reduction of protein. What might be the problem? Could the problem be in my cell treatment method?

Discussions siRNA/RNAi/miRNA transfection human

Get tips on using Lipofectamine® 2000 Transfection Reagent to perform siRNA / RNAi /miRNA transfection Rat - C6 Lipofectamine

Products Thermo Fisher Scientific Lipofectamine® 2000 Transfection Reagent

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms