Get tips on using OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence) to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma
Get tips on using DCFDA - Cellular Reactive Oxygen Species Detection Assay Kit to perform ROS assay cell type - PLHC-1, SK-HEP-1, Hep3b, HepG2 human hepatocellular carcinoma
Get tips on using MitoSOX™ Red Mitochondrial Superoxide Indicator, for live-cell imaging to perform ROS assay cell type - A549 human adenocarcinomic human alveolar basal epithelial cells
Get tips on using APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU to perform TUNEL assay cell type - SK-MEL-2 human melanoma
Get tips on using APO-BrdU™ TUNEL Assay Kit, with Alexa Fluor™ 488 Anti-BrdU to perform TUNEL assay cell type - A549, NCI-H460, H1299 human alveolar carcinoma
Get tips on using Corning® BioCoat™ Matrigel® Invasion Chamber with 8.0 µm PET Membrane in four 6-well Plates to perform Cell migration / Invasion cell type - 4T1
Get tips on using Corning® BioCoat™ Matrigel® Invasion Chambers with 8.0 µm PET Membrane in two 24-well Plates to perform Cell migration / Invasion cell type - BxPC-3
Get tips on using Corning® BioCoat™ Matrigel® Invasion Chambers with 8.0 µm PET Membrane in two 24-well Plates to perform Cell migration / Invasion cell type - MG-63
Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.
Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.
Fill out your contact details and receive price quotes in your Inbox
Outsource experiment