shRNA gene silencing Human TF‐1

- Found 6085 results

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human RCC

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human AGS

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human ASM

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human SW480

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Gene specific profiling Hypothalamus mouse tissue MeCP2

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Gene specific profiling A2780 miR-30c-5p

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Gene specific profiling A2780 miR-30a-5p

The estimation of DNA methylation level heavily depends on the complete conversion of non-methylated DNA cytosines. It is crucial to ensure complete conversion of non-methylated cytosines in DNA. Therefore, it is important to incorporate controls for bisulfite reactions, as well as to pay attention to the appearance of cytosines in non-CpG sites after sequencing, which is an indicator of incomplete conversion.

DNA DNA methylation profiling Gene specific profiling MG-63 miR-34a

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Human chondrocytes

Transfection is a powerful technique that enables the study of the function of genes and gene products in cells. Based on the nature of experiments, we may need a stable DNA transfection in cells for persistent gain-of-function or loss-of-function of the target gene. For stable transfection, integration of a DNA vector into the chromosome is crucial which requires selective screening and clonal isolation. By carefully selecting a viral delivery system and related reagents we can ensure safe and highly-efficient delivery of expression constructs for high-level constitutive or inducible expression in any mammalian cell type.

DNA DNA transfection Mammalian cells Primary cells Human astrocytes

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms