Select a Cell type


Angiogenesis assay mouse

- Found 3945 results

Get tips on using CultreCoat Low BME Cell Invasion Assay, 96 well to perform Cell migration / Invasion cell type - SCC4

Products R&D Systems CultreCoat Low BME Cell Invasion Assay, 96 well

Get tips on using Oris™ Cell Migration Assay - Collagen I Coated to perform Cell migration / Invasion cell type - HaCat

Products Platypus Technologies Oris™ Cell Migration Assay - Collagen I Coated

Get tips on using CultreCoat BME Cell Invasion Optimization Assay, 96 well to perform Cell migration / Invasion cell type - H1299

Products R&D Systems CultreCoat BME Cell Invasion Optimization Assay, 96 well

Get tips on using CultreCoat Medium BME Cell Invasion Assay, 96 well to perform Cell migration / Invasion cell type - Skov3

Products R&D Systems CultreCoat Medium BME Cell Invasion Assay, 96 well

Get tips on using Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay to perform TUNEL assay cell type - A549, NCI-H460, H1299 human alveolar carcinoma

Products Thermo Fisher Scientific Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay

Get tips on using Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Thermo Fisher Scientific Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay

Get tips on using CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) to perform Cell cytotoxicity / Proliferation assay cell type - LTEP-a-2 lung adenocarcenoma

Products Promega CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS)

Get tips on using Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System to perform Reporter gene assay β-galactosidase substrates - U87 and U251 glioblastoma cells

Products Thermo Fisher Scientific Galacto-Light Plus™ β-Galactosidase Reporter Gene Assay System

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Mouse 3T3-L1 BMP-3b/GDF10

miRNA is the inherent gene silencing machinery which can have more than one mRNA target, whereas siRNA can be designed to target a particular mRNA target. By design, both siRNA and miRNA are 20-25 nucleotides in length. The target sequence for siRNAs is usually located within the open reading frame, between 50 and 100 nucleotides downstream of the start codon. There are two ways in which cells can be transfected with desired RNAi: 1. Direct transfection (with calcium phosphate co-precipitation or cationic lipid mediated transfection using lipofectamine or oligofectamine), and 2. Making RNAi lentiviral constructs (followed by transformation and transduction). Lentiviral constructs are time consuming, but provide a more permanent expression of RNAi in the cells, and consistent gene silencing. Direct transfection of oligonucleotides provides temporary genetic suppression. Traditional methods like calcium phosphate co-precipitation have challenges like low efficiency, poor reproducibility and cell toxicity. Whereas, cationic lipid-based transfection reagents are able to overcome these challenges, along with applicability to a large variety of eukaryotic cell lines. When using oligos, the ideal concentration lies between 10-50nM for effective transfection.

RNA siRNA / miRNA gene silencing Mouse B16-F10 12-Lox/ALOX12

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms