Flowcytometry CD16 Mouse /IgG1, kappa

- Found 1950 results

Get tips on using Nectin 1 Monoclonal Antibody (CK8) to perform Flow cytometry Anti-bodies Human - CD111/Nectin-1

Products eBioscience Nectin 1 Monoclonal Antibody (CK8)

Get tips on using AllPrep DNA/RNA Mini Kit to perform RNA isolation / purification Cells - primary human CD14+ monocytes

Products Qiagen AllPrep DNA/RNA Mini Kit

Get tips on using CelLytic™ MT Cell Lysis Reagent to perform Protein isolation Mammalian cells - Human CD14+ cells

Products Sigma-Aldrich CelLytic™ MT Cell Lysis Reagent

Get tips on using PDGFR-α Antibody (C-9): sc-398206 to perform Flow cytometry Anti-bodies Human - CD140/PDFGR2

Products Santa Cruz Biotechnology PDGFR-α Antibody (C-9): sc-398206

Get tips on using Anti-Human L1CAM Therapeutic Antibody Fab Fragment to perform Flow cytometry Anti-bodies Human - CD171/L1CAM

Products Creative BioLabs Anti-Human L1CAM Therapeutic Antibody Fab Fragment

Get tips on using Human Thrombopoietin R/Tpo R APC-conjugated Antibody to perform Flow cytometry Anti-bodies Human - CD110/Thrombopoietin R

Products R&D Systems Human Thrombopoietin R/Tpo R APC-conjugated Antibody

Get tips on using Human Thrombopoietin R/Tpo R PE-conjugated Antibody to perform Flow cytometry Anti-bodies Human - CD110/Thrombopoietin R

Products R&D Systems Human Thrombopoietin R/Tpo R PE-conjugated Antibody

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD133

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD171/L1CAM

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD15

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms