siRNA / miRNA gene silencing Human DuCaP

- Found 5132 results

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human LCL

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human PBMC

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human OSCC

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human RCC

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human AGS

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human ASM

DNA-protein interactions are studied by using ChIP. The basic steps in this technique are crosslinking, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. During ChIP, if chromatin is under-fragmented or fragments are too large which can lead to the increased background and lower resolution. Shorter cross-linking times (5-10 min) and/or lower formaldehyde concentrations (<1%) may improve shearing efficiency. If Chromatin is over-fragmented, then optimize shearing conditions for each cell type to improve ChIP efficiency. Over-sonication of chromatin may disrupt chromatin integrity and denature antibody epitopes. If you do not see any product or very little product in the input PCR reactions, add 5–10 μg chromatin per IP.

Proteins ChIP Human SW480

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary human chondrocytes

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary human osteoblasts

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary human preadipocytes

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms