High-resolution melting (HRM) analysis

- Found 4927 results

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes include: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of the enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, the optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with the activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Proteins Restriction Enzymes SchI / MlyI

Isolating RNA from tissues and paraffin-embedded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the integrity of RNA.

RNA RNA isolation / purification Tissue Human Cerebral hemispheres

Get tips on using Human NRG1-beta 1/HRG1-beta 1 DuoSet ELISA to perform ELISA Human - NRG1

Products R&D Systems Human NRG1-beta 1/HRG1-beta 1 DuoSet ELISA

Get tips on using CD30-PE, HRS4, 2 mL, ASR to perform Flow cytometry Anti-bodies Human - CD30

Products Beckman Coulter CD30-PE, HRS4, 2 mL, ASR

Get tips on using KAPA Stranded RNA-Seq Kits with RiboErase (HMR) to perform RNA sequencing Human - MCF-7

Products Roche Lifesciences KAPA Stranded RNA-Seq Kits with RiboErase (HMR)

Get tips on using KAPA Stranded RNA-Seq Kits with RiboErase (HMR) to perform RNA sequencing Human - MDA-MB-231

Products Roche Lifesciences KAPA Stranded RNA-Seq Kits with RiboErase (HMR)

A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.

Cellular assays Angiogenesis assay human hREC

Get tips on using In Vitro Angiogenesis Assay Kit to perform Angiogenesis assay human - hREC

Products Merck Millipore In Vitro Angiogenesis Assay Kit

Isolating RNA from tissues and paraffin embeded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the intigrity of RNA

RNA RNA isolation / purification Tissue Human Adipose

Isolating RNA from tissues and paraffin embeded tissue samples can be challenging due to cross-linking of biomolecules and fragmented nucleic acids. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in presence of RNAse inhibitors. The homogenization process should be carried out on dry ice to maintain the intigrity of RNA

RNA RNA isolation / purification Tissue Human Adrenal glands

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms