siRNA / miRNA gene silencing Human Melanoma cells (501 Mel and SK Mel 28)

- Found 9925 results

Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.

DNA DNA quantification Human HEK 293

Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.

DNA DNA quantification Human WI-38

Though DNA quantification is but one small step in the multifaceted DNA sample preparation workflow, it can have large implications on the performance and validity of conclusions drawn from downstream assays. Major challenges include accuracy, precision, reproducibility, and detection of present contamination. Among UV spectrophotometry, fluorescence and real-time PCR based methods, the quantification method should be chosen based on the requirement of the downstream assay.

DNA DNA quantification Human PC-3

Isolating DNA from tissues and paraffin-embedded tissue samples can be challenging as double-stranded DNA is physically fragile and highly susceptible to exo- and endonucleases. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in the presence of DNAse inhibitors. Further, extracting DNA from the nucleus need specific methods by combining physical, mechanical and chemical lysis approaches,

DNA DNA isolation / purification Cells Primary cells Lymphocytes

Isolating DNA from tissues and paraffin-embedded tissue samples can be challenging as double-stranded DNA is physically fragile and highly susceptible to exo- and endonucleases. The best solution is to slice the tissues into smaller pieces and make a homogenate solution (using tissue homogenizer or grinding liquid nitrogen frozen samples) in the presence of DNAse inhibitors. Further, extracting DNA from the nucleus need specific methods by combining physical, mechanical and chemical lysis approaches,

DNA DNA isolation / purification Cells Primary cells HUVEC

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Eukaryotic cells T. pseudonana IbpA DR2 antigen from Histophilus somni

Get tips on using MammoCult™ Human Medium Kit to perform 3D Cell Culture Media Human breast cancer MCF-7 cells-Mammospheres

Products STEMCELL technologies MammoCult™ Human Medium Kit

Get tips on using Mouse Gene Expression v2 4x44K Microarray Kit to perform Microarray Gene expression arrays - Mouse liver tissue Cyanine-3-CTP

Products Agilent Technologies Mouse Gene Expression v2 4x44K Microarray Kit

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human C-Reactive Protein/CRP

ELISA is the most commonly used method of detecting and quantifying the concentration of an antigen in an unknown sample. During the experiment, If you get a weak signal, then make sure reagents are at room temperature before starting the assay. Try increasing incubation times to ensure maximal antibody binding and amplify the signal. Secondly, if you get values above 0 in the negative control indicates a high background signal. Try to consider reducing your antibody concentration and prevent non-specific binding of antibodies by using affinity-purified antibody and suitable blocking buffers. To avoid high well to well variation, do not stack plates during incubation, no bubbles in the plate and wash wells thoroughly to avoid variation.

Proteins ELISA Human Serpin E1/PAI-1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms