siRNA / miRNA gene silencing Human BxPC-3

- Found 5721 results

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Glioma differentiation into Human Neuronal lineage

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media hiPSC differentiation into Human Neuronal cells

Get tips on using Human VE Cadherin ELISA Kit (ab210968) to perform ELISA Human - VE Cadherin

Products Abcam Human VE Cadherin ELISA Kit (ab210968)

Get tips on using Human VE-Cadherin Quantikine ELISA Kit to perform ELISA Human - VE Cadherin

Products R&D Systems Human VE-Cadherin Quantikine ELISA Kit

Get tips on using Human TNF alpha ELISA Kit (ab181421) to perform ELISA Human - TNF-alpha

Products Abcam Human TNF alpha ELISA Kit (ab181421)

Get tips on using Human TNF-alpha Quantikine ELISA Kit to perform ELISA Human - TNF-alpha

Products R&D Systems Human TNF-alpha Quantikine ELISA Kit

Get tips on using Human PDGF BB ELISA Kit (ab100624) to perform ELISA Human - PDGF-BB

Products Abcam Human PDGF BB ELISA Kit (ab100624)

Get tips on using Human HO 1 ELISA Kit (ab133064) to perform ELISA Human - HO-1

Products Abcam Human HO 1 ELISA Kit (ab133064)

Get tips on using Human Dkk-1 ELISA Kit (RAB0143) to perform ELISA Human - Dkk-1

Products Sigma-Aldrich Human Dkk-1 ELISA Kit (RAB0143)

Get tips on using Human Dkk-1 DuoSet ELISA (DY1906) to perform ELISA Human - Dkk-1

Products R&D Systems Human Dkk-1 DuoSet ELISA (DY1906)

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms