siRNA / miRNA gene silencing Human RMS

- Found 5773 results

Cellular assays Cell Isolation Human Mesenchymal Stem Cell

Get tips on using CD163 Antibody, anti-human, PE-Vio® 770, REAfinity™ to perform Flow cytometry Anti-bodies Human - CD163

Products Miltenyibiotec CD163 Antibody, anti-human, PE-Vio® 770, REAfinity™

Get tips on using Alexa Fluor® 488 anti-human CD127 (IL-7Rα) Antibody to perform Flow cytometry Anti-bodies Human - CD127

Products BioLegend Alexa Fluor® 488 anti-human CD127 (IL-7Rα) Antibody

Get tips on using Alexa Fluor® 488 anti-human CD15 (SSEA-1) Antibody to perform Flow cytometry Anti-bodies Human - CD15

Products BioLegend Alexa Fluor® 488 anti-human CD15 (SSEA-1) Antibody

Get tips on using EasySep™ Human CD33 Positive Selection Kit II to perform Cell Isolation Monocyte

Products STEMCELL technologies EasySep™ Human CD33 Positive Selection Kit II

Get tips on using Monoclonal Mouse Anti-Human Hepatocyte (Concentrate) Clone OCH1E5 to perform Immunohistochemistry Mouse - Hepatocyte

Products Agilent Technologies Monoclonal Mouse Anti-Human Hepatocyte (Concentrate) Clone OCH1E5

Get tips on using Human/Mouse/Rat Activin A Quantikine ELISA Kit to perform ELISA Rat - Activin

Products R&D Systems Human/Mouse/Rat Activin A Quantikine ELISA Kit

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD126/IL-6Ralpha

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD111/Nectin-1

Flow cytometry is an immunophenotyping technique whereby sing cell suspensions are stained for either cell surface markers or intracellular proteins by fluorescently-labelled antibodies and analyzed with a flow cytometer, where fluorescently-labelled molecules are excited by the laser to emit light at varying wavelengths, which is then detected by the instrument. There are several key criteria which are required to be kept in mind while designing a flow experiment- 1. Antibody titration (optimal dilution of antibodies should be calculated in order to avoid over- or under- saturated signals for proper detection of surface and intracellular markers), 2. Precision (3 or more replicates of the sample should be used per experiment), 3. Specificity (proper isotype controls should be included in the experiment), 4. Day-to-day variability (experiments should be repeated 3 or more times to ensure consistency and avoid variability due to flow cytometer settings), 5. Antibody interaction (Fluorescence minus one or FMO should be used, which is the comparison of signals from panel minus one antibody vs. the full panel), and 6. Antibody stability (fluorescently-labelled antibodies should be stored at 4C).

Proteins Flow cytometry Anti-bodies Human CD31/PECAM-1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms