RNA sequencing Human

- Found 6913 results

Get tips on using MACSprep™ Chimerism CD34 MicroBead Kit, human to perform Cell Isolation CD34+ cells

Products Miltenyibiotec MACSprep™ Chimerism CD34 MicroBead Kit, human

Get tips on using Brilliant Violet 510™ anti-human HLA-DR Antibody to perform Flow cytometry Anti-bodies Human - HLA-DR

Products BioLegend Brilliant Violet 510™ anti-human HLA-DR Antibody

Get tips on using PerCP-Cy™5.5 Mouse Anti-Human HLA-DR to perform Flow cytometry Anti-bodies Human - HLA-DR

Products BD Biosciences PerCP-Cy™5.5 Mouse Anti-Human HLA-DR

Get tips on using PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody to perform Flow cytometry Anti-bodies Human - CD184/CXCR4

Products BioLegend PE/Dazzle™ 594 anti-human CD184 (CXCR4) Antibody

Get tips on using FlashTag™ Biotin HSR RNA Labeling Kits to perform Microarray RNA amplification & Labeling - Rat primary vascular smooth muscle cells Biotin

Products Thermo Fisher Scientific FlashTag™ Biotin HSR RNA Labeling Kits

A standard angiogenic assay involves the autonomous endothelial cell response of self-organization into microvessels, also known as tubes when seeded on a basement membrane matrix in the presence of the appropriate growth factors. However, the component of basement membrane matrix may also affect the tube formation by endothelial cells. Hence it is important to use a standard angiogenesis assay kit or use the same membrane matrix with known composition to standardize the assay conditions.

Cellular assays Angiogenesis assay human hESC-EC

Get tips on using VWR Life Science RiboZol™ RNA Extraction Reagent to perform RNA isolation / purification Cells - immortalized C2C12

Products VWR VWR Life Science RiboZol™ RNA Extraction Reagent

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human PBMCs

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human HepG2

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Comperative genomic hybridization Human STUMP

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms