DNA Damage Assay Human bronchial epithelial cells (hBE)

- Found 9142 results

Get tips on using Cell Cycle and Apoptosis Analysis Kit to perform Cell cycle assay human - SKOV3

Products Beyotime Cell Cycle and Apoptosis Analysis Kit

Get tips on using Phospho-ULK1 (Ser757) Antibody to perform Autophagy assay cell type - Human primary MSCs

Products Cell Signaling Technology Phospho-ULK1 (Ser757) Antibody

Get tips on using LC3B Antibody Kit for Autophagy to perform Autophagy assay cell type - Human melanocytes

Products Thermo Fisher Scientific LC3B Antibody Kit for Autophagy

Get tips on using FuGENE® 6 Transfection Reagent to perform DNA transfection Mammalian cells - Primary cells Rat aortic smooth muscle cells (rASMC)

Products Promega FuGENE® 6 Transfection Reagent

Get tips on using FxCycle™ PI/RNase Staining Solution to perform Cell cycle assay human - SW480

Products Thermo Fisher Scientific FxCycle™ PI/RNase Staining Solution

Get tips on using FxCycle™ PI/RNase Staining Solution to perform Cell cycle assay human - U266

Products Thermo Fisher Scientific FxCycle™ PI/RNase Staining Solution

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Differentiation of Human hESCs into pancreatic progenitors

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Point mutation HUVEC PLCγ1

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Point mutation HUVEC hCLDN5

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Point mutation HUVEC PLCb1

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms