shRNA gene silencing Mouse Prostate cancer cell lines (DU145 and PC3)

- Found 9733 results

Get tips on using PE Mouse Anti-Human CD51/CD61 to perform Flow cytometry Anti-bodies Human - CD51

Products BD Biosciences PE Mouse Anti-Human CD51/CD61

Get tips on using APC-H7 Mouse Anti-Human CD43 to perform Flow cytometry Anti-bodies Human - CD43

Products BD Biosciences APC-H7 Mouse Anti-Human CD43

Get tips on using APC-H7 Mouse Anti-Human CD71 to perform Flow cytometry Anti-bodies Human - CD71

Products BD Biosciences APC-H7 Mouse Anti-Human CD71

Get tips on using PE-CF594 Mouse Anti-Human FoxP3 to perform Flow cytometry Anti-bodies Human - FOXP3

Products BD Biosciences PE-CF594 Mouse Anti-Human FoxP3

Get tips on using APC-H7 Mouse Anti-Human CD44 to perform Flow cytometry Anti-bodies Human - CD44

Products BD Biosciences APC-H7 Mouse Anti-Human CD44

Get tips on using APC anti-human/mouse CD49f Antibody to perform Flow cytometry Anti-bodies Human - CD49f/ITGA6

Products BioLegend APC anti-human/mouse CD49f Antibody

Get tips on using Mouse Serpin E1/PAI-1 DuoSet ELISA to perform ELISA Mouse - Serpin E1/PAI-1

Products R&D Systems Mouse Serpin E1/PAI-1 DuoSet ELISA

Get tips on using Mouse C-Reactive Protein/CRP DuoSet ELISA to perform ELISA Mouse - C-Reactive Protein/CRP

Products R&D Systems Mouse C-Reactive Protein/CRP DuoSet ELISA

Cell cytotoxicity assays measure the ability of certain compounds or chemical mediators to reduce the viability of the cells. The term cell cytotoxicity assay can sometimes be used interchangeably with cell proliferation assay. Healthy living cells can be identified by the use of formazan dyes, protease biomarkers or by measuring ATP content. The formazan dyes are chromogenic products formed by the reduction of tetrazolium salts by dehydrogenases, such as lactate dehydrogenase (LDH) and reductases that are released during cell death. Common tetrazolium salts include INT, MTT, MTS and XTT. Cell cytotoxicity can also be measured by using the SRB and WST-1 assays. These assays can usually be used in a high-throughput fashion and can be quantitated by measuring absorbance, colorimetry or luminescence. All these assays require similar numbers of cell plating at the initiation, a time course of treatment with the cytotoxic agent and at least triplicates for each condition at every point of analysis. Cell shrinkage, plasma membrane blebbing, cell detachment, externalization of phosphatidylserine, nuclear condensation and ultimately DNA fragmentation are well-described features of apoptosis. The assays that rely on cell membrane integrity for their function, may not be able to quantify early apoptosis. Therefore, in order to distinguish early apoptotic vs. late apoptotic or necrotic cells, additional flow cytometry techniques can be used. A combination of Annexin V and PI (propidium iodide) can be used to distinguish early (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells. Sometimes, caspase assays are used in order to differentiate the stages of apoptosis.

Cellular assays Cell cytotoxicity / Proliferation assay cell type oral squamous cell carcinoma

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media NCH421K cells primary glioma

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms