sirna-rnai-mirna-transfection-human-hela-lipofectamine

- Found 6257 results

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Insertion SKOV3 miR-134

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Insertion HepG2 keratin 8

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Insertion IMR-32 SULT4A

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Deletion MCF-7 AHR

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Deletion PC-3 AGR2

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Deletion HepG2 Keratin 14

Site-directed mutagenesis (SDM) can be challenging, particularly during detection/confirmation of (SDM) in colonies by sequencing or PCR techniques. This common issue in SDM is heavily relying on designing of mutagenic primer pairs. The best solution is to design the mutagenic primers that have extended 3'-ends/3'-overhang. This would provide the annealing region between the mutagenic primer pair is essentially shorter. and hence ensure a lower annealing temperature for the primer pair along with a higher chance of annealing to the template.

DNA Site Directed Mutagenesis (SDM) Human Deletion PC-3 AGR3

Reporter gene assays enable high sensitivity measurement of gene expression and cell signaling through the addition of bioluminescent genes into target cells. One of the major challenges is to make a specific construct that has no responses other than those related to the signaling pathway of interest. This can be achieved by selecting highly specific reporter constructs containing only defined responsive elements and a minimal promoter linked to reporter enzymes such as luciferase

Cellular assays Reporter gene assay luciferase primary human endometrial stromal cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Mammalian cells Human CD14+ cells

Protein isolation is a technique that involves isolation and/ or purification of protein from cells or tissues via chromatography or electrophoresis. The major challenges in protein isolation include: 1. The concentration of proteins in cells is variable and tends to be small for some intracellular proteins. Unlike nucleic acids, proteins cannot be amplified. 2. Proteins are more unstable than nucleic acids. They are easily denatured under suboptimal temperature, pH or salt concentrations. 3. Finally, no generalized technique/protocol can be applied for protein isolation. Proteins may have different electrostatic (number of positively or negatively charged amino acids) or hydrophobic properties. Therefore, protein purification requires multiple steps depending on their charge (a negatively charged resin/column for positively charged proteins and vice-versa), dissolution (using detergents) and unlike in the case of DNA and RNA, instead of using salts, proteins should be isolated by isoelectric precipitation.

Proteins Protein isolation Tissue Human aortic endothelial cells

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms