siRNA / miRNA gene silencing Rat MTLn3 (rat mammary adenocarcinoma breast cancer cell line)

- Found 8613 results

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Human endometrial stromal cells Biotin

DNA microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray Gene expression arrays Human whole blood cells Biotin

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been greatly used for studies on embryonic development and cell differentiation.iPSCs provide a stable source for either self-renewal or differentiation into suitable cells when cultured in a particular environment. Pluripotent cell culture was originally started by deriving cells from inner cell mass (ICM) from pre-implanted blastocysts, these were called embryonic stem cells. These cells after isolation can be grown on traditional extracellular matrices (like mouse embryonic fibroblasts, MEFs) or feeder-free culture systems. DMEM/F12 has been the most commonly used basal media in the culture of pluripotent cells. These cells are cultured at normal atmospheric oxygen levels, 21%, however, some studies have proposed that 4% oxygen tension may be better for hESC growth. Higher D-glucose concentration (4.2g/l) and osmolarity (320mOsm) that mimics the natural environment of embryonic tissue are optimal for the growth of hESCs. Supplements like N2 and/or B-27, in the presence of growth factors like bFGF, have been shown to increase pluripotency of these cells. bFGF, FGF2 and other ligands of receptor tyrosine kinases like IGF are also required or maintain self-renewal ability of these cells. TGF𝛃1, by its activation of SMAD2/3 signalling, also represses differentiation of iPSCs. Other compounds like ROCK inhibitors reduce blebbing and apoptosis in these cells to maintain their clonogenicity. However, an inhibitor for LIF (leukaemia inhibitory factor, which is one of the pluripotent genes) has an opposing effect. Therefore, it is important to understand the culture conditions and media composition that affect downstream signalling in hESCs or iPSCs that may lead to their differentiation.

Cell culture media Stem cell culture media Human bone mesenchymal stem cell (BMSC)

Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - SH-SY5Y

Products Sigma-Aldrich β-Gal Reporter Gene Assay, chemiluminescent

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary rabbit aortic smooth muscle cells

When extracting nucleic acids from cell cultures, thorough homogenization of cells via vortexing in lysis buffer is very necessary. Choose the best RNA isolation method keeping in mind the downstream applications, generally, column-based isolations result in clean and concentrated RNA samples. Downstream applications like sequencing and cDNA synthesis require high-quality RNA, always treat the samples with DNases and check their integrity by running a gel.

RNA RNA isolation / purification Cells primary rabbit skeletal muscle-derived stem cells

Get tips on using β-Gal Reporter Gene Assay, chemiluminescent to perform Reporter gene assay β-galactosidase substrates - MIA PaCa-2

Products Sigma-Aldrich β-Gal Reporter Gene Assay, chemiluminescent

Get tips on using β-Galactosidase Reporter Gene Staining Kit to perform Reporter gene assay β-galactosidase substrates - mouse embryo tissue

Products Sigma-Aldrich β-Galactosidase Reporter Gene Staining Kit

Get tips on using MISSION® shRNA SOX2 Lentiviral Transduction Particles to perform shRNA gene silencing Human - Islets of langerhans SOX2 lentiviral particles

Products Sigma-Aldrich MISSION® shRNA SOX2 Lentiviral Transduction Particles

Get tips on using MISSION® shRNA SOX6 Lentiviral Transduction Particles to perform shRNA gene silencing Human - Islets of langerhans SOX6 lentiviral particles

Products Sigma-Aldrich MISSION® shRNA SOX6 Lentiviral Transduction Particles

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms