Select a Cell type


Site Directed Mutagenesis (SDM) Dog

- Found 4524 results

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type RG2 [D74]

As autophagy is a multi-step process which includes not just the formation of autophagosomes, but most importantly, flux through the entire system, including the degradation upon fusion with lysosomes, which makes it quite challenging for detection. There are several methods for detection in mammalian cells, including immunoblotting analysis of LC3 and p62 and detection of autophagosome formation/maturation by fluorescence microscopy, Currently, there is no single “gold standard” for determining the autophagic activity that is applicable in every experimental context, hence it is recommended to go for the combined use of multiple methods to accurately assess the autophagic activity in any given biological setting.

Cellular assays Autophagy assay cell type AR42J

A gross majority of classical apoptotic attributes can be quantitatively examined by flow cytometry, the preferred platform for rapid assessment of multiple cellular attributes at a single-cell level. However, sample preparation for such flow cytometry-based techniques could be challenging. Cell harvesting by trypsinization, mechanical or enzymatic cell disaggregation from tissues, extensive centrifugation steps, may all lead to preferential loss of apoptotic cells. To overcome this strictly follow manufacturers instruction of the detection kit.

Cellular assays Apoptosis assay cell type T-cells Mouse (CD4+ and CD8+)

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Pseudomonas aeruginosa

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Escherichia coli

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Neisseria gonorrhoeae

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Vibro cholerae

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Vibro parahaemolyticus

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Salmonella enterica

Generally isolating RNA from Gram-negative bacteria is easy, however keeping your working environment clean and RNase free (use RNase inhibitor) is essential. Some common points to keep in mind: a) Use fresh samples for isolation or store them by freezing in RNA stabilizing buffer until use. b) Choose the bacterial input amounts carefully, to ensure buffer volumes are adequate and not to overload the columns.

RNA RNA isolation / purification Bacteria Gram negative Bordetella pertussis

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms