siRNA / miRNA gene silencing Human SPC-A1

- Found 5917 results

Get tips on using TUNEL Assay Kit - BrdU-Red to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Abcam TUNEL Assay Kit - BrdU-Red

Get tips on using TACS® 2 TdT Fluorescein Kit to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Trevigen TACS® 2 TdT Fluorescein Kit

Get tips on using In Situ Cell Death Detection Kit, TMR red to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Sigma-Aldrich In Situ Cell Death Detection Kit, TMR red

Get tips on using FragEL™ DNA Fragmentation Detection Kit, Colorimetric - TdT Enzyme to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Millipore FragEL™ DNA Fragmentation Detection Kit, Colorimetric - TdT Enzyme

Get tips on using Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay to perform TUNEL assay cell type - A127, U87MG, U251MG, T98G human glioblastoma cells

Products Thermo Fisher Scientific Click-iT™ TUNEL Alexa Fluor™ 488 Imaging Assay

Cells are sourced from various tissues to grow them in in-vitro conditions. Therefore, cell specific nutrients are important for their survival, maintenance and growth. Determining the appropriate cell culture media is a challenge if you are growing a cell line or a microorganism for the first time. Established cell lines, primary cells, stem cells, bacteria and Yeast all require varied nutrients from basic to complex. Based on the cell type, one can easy find what media and nutrients your peers have used before you try to reinvent the wheel.

Cell culture media Mammalian cell culture media A172

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rhesus monkey brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse brain tissue Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Mouse cochlaea Biotin

Microarrays enable researchers to monitor the expression of thousands of genes simultaneously. However, the sensitivity, accuracy, specificity, and reproducibility are major challenges for this technology. Cross-hybridization, combination with splice variants, is a prime source for the discrepancies in differential gene expression calls among various microarray platforms. Removing (either from production or downstream bioinformatic analysis) and/or redesigning the microarray probes prone to cross-hybridization is a reasonable strategy to increase the hybridization specificity and hence, the accuracy of the microarray measurements.

DNA Microarray RNA amplification & Labeling Rat saphenous arteries Biotin

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms