Immunohistochemistry Collagen Type VII

- Found 3302 results

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 fmnl 2/3

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Rat Deletion INS-1 832/13 Ep300

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells MIR

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells Slx2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion ES (embryonic stem) cells Etv2 promoter

Hello! I used Trizol to extract total RNA from in-vitro cultured bacteria (1 X 10^8 cells). After phase separation, I mixed ~0.4 ml of the upper phase which contains RNA with 0.5 mL cold isopropanol. However, the amount of RNA when measured in Nanodrop was very low. In addition, the ratio between 260 and 230 was around 0.1 to 0.5. Is there a chance that my sample was contaminated by the Trizol reagent? When I collected the aqueous phase I made sure to not touch the lower phase. What should I do?

Discussions Some help with RNA isolation using Trizol

DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.

DNA DNA Ladder Sizing

DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.

DNA DNA Ladder Supercoiled

DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.

DNA DNA Ladder Fast

DNA ladder is typically used as a reference to estimate the size of unknown DNA samples that are separated based on their mobility in an electrical field. The critical points for running a DNA ladder are compatibility with running buffer, agarose gel percentage, and choosing the correct range of DNA ladder for sizing DNA molecules.

DNA DNA Ladder 1 kb

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms