siRNA / miRNA gene silencing Human SPC-A1

- Found 5917 results

Get tips on using Senescence Cells Histochemical Staining Kit to perform Reporter gene assay β-galactosidase substrates - mouse embryonic fibroblasts

Products Sigma-Aldrich Senescence Cells Histochemical Staining Kit

Get tips on using Senescence Cells Histochemical Staining Kit to perform Reporter gene assay β-galactosidase substrates - adipose stem cells

Products Sigma-Aldrich Senescence Cells Histochemical Staining Kit

Get tips on using Beta-Lactamase Activity Assay Kit to perform Reporter gene assay β-lactamase substrates - Burkholderia cepacia complex

Products Sigma-Aldrich Beta-Lactamase Activity Assay Kit

Get tips on using Luminescent β-galactosidase Detection Kit II to perform Reporter gene assay β-galactosidase substrates - RAW 264.7

Products Takara Bio Inc Luminescent β-galactosidase Detection Kit II

Get tips on using Negative control, native pGL4.13 luciferase vector to perform Reporter gene assay luciferase - negative control (luciferase vector)

Products Promega Negative control, native pGL4.13 luciferase vector

Get tips on using peSpCas9(1.1)-2×sgRNA (empty, donor) to perform CRISPR Human - Repression SLC7A11

Products Addgene peSpCas9(1.1)-2×sgRNA (empty, donor)

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Activation 3T3-L1 C/EBPβ

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 PTRF

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 TEAD

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Mouse Deletion 3T3-L1 Usp2

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms