Site Directed Mutagenesis (SDM) Human Deletion K562

- Found 6383 results

Get tips on using ON-TARGETplus Human AQP5 (362) siRNA - SMARTpool to perform siRNA / miRNA gene silencing Human - K562 AQP5

Products Dharmacon ON-TARGETplus Human AQP5 (362) siRNA - SMARTpool

Get tips on using PI/RNASE Solution to perform Cell cycle assay human - K562

Products Immunostep PI/RNASE Solution

Get tips on using BD Cycletest™ Plus DNA Kit to perform Cell cycle assay human - K562

Products BD Biosciences BD Cycletest™ Plus DNA Kit

Get tips on using Guava Cell Cycle Reagent for Flow Cytometry to perform Cell cycle assay human - K562

Products Merck Millipore Guava Cell Cycle Reagent for Flow Cytometry

Get tips on using DCFDA - Cellular Reactive Oxygen Species Detection Assay Kit to perform ROS assay cell type - K562 human leukemia cells

Products Abcam DCFDA - Cellular Reactive Oxygen Species Detection Assay Kit

Get tips on using ROS-ID® Total ROS/Superoxide detection kit to perform ROS assay cell type - K562 human leukemia cells

Products Enzo Life Sciences ROS-ID® Total ROS/Superoxide detection kit

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation hATCB

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation SOX2

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation ESR1

The RNA-guided CRISPR-Cas9 nuclease system has revolutionized the genome editing practices. For the most part, the Cas9-mediated genome editing is performed either via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, However, designing of specific sgRNAs and minimizing off-target cleavage mediated mutagenesis are the major challenges in CRISPR-Cas based genome editing. To circumvent these issues, we can take advantages of many available tools and approaches for sgRNA construction and delivery.

DNA CRISPR Human Activation REPRIMO

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms