RNA isolation / purification Cells

- Found 8898 results

Get tips on using PRO-PREP™ Protein Extraction Solution (C/T) to perform Protein isolation Mammalian cells - 3T3-L1

Products iNtRON Biotechnology PRO-PREP™ Protein Extraction Solution (C/T)

Get tips on using VWR Life Science RIPA Lysis Buffer, Biotechnology Grade to perform Protein isolation Mammalian cells - Caco-2

Products VWR VWR Life Science RIPA Lysis Buffer, Biotechnology Grade

Get tips on using Jump In™ T-REx™ HEK 293 Kit to perform Protein expression and purification Mammalian cells - HEK 293 HER2

Products Thermo Fisher Scientific Jump In™ T-REx™ HEK 293 Kit

Get tips on using pMT/BiP/V5-His A, B, & C Drosophila Expression Vectors to perform Protein expression and purification Insect cells - S2 HER2

Products Thermo Fisher Scientific pMT/BiP/V5-His A, B, & C Drosophila Expression Vectors

Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - Neuro 2a

Products New England BioLabs NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

Get tips on using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina® to perform RNA sequencing Mouse - BV-2

Products New England BioLabs NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

Get tips on using M-PER™ Mammalian Protein Extraction Reagent to perform Protein isolation Mammalian cells - SK-N-BE(2)-C

Products Thermo Fisher Scientific M-PER™ Mammalian Protein Extraction Reagent

Stem cells have the unique ability to self-renew or differentiate themselves into various cell types in response to appropriate signals. These cells are especially important for tissue repair, regeneration, replacement, or in the case of hematopoietic stem cells (HSCs) to differentiate into various myeloid populations. Appropriate signals refer to the growth factor supplements or cytokines that mediate differentiation of various stem cells into the required differentiated form. For instance, HSCs can be differentiated into dendritic cells (with IL-4 and GM-CSF), macrophages (with m-CSF) and MDSCs (with IL-6 and GM-CSF). Human pluripotent stem cells (hPSCs) and induced pluripotent stem cells (iPSCs) can be first cultured in neural differentiation media (GSK3𝛃-i, TGF𝛃-i, AMPK-i, hLIF) to form neural rosettes, which can be differentiated into neural or glial progenitors (finally differentiated into oligodendrocytes). Neural progenitors can be finally differentiated into glutaminergic (dibytyryl cAMP, ascorbic acid) and dopaminergic (SHH, FGF-8, BDNF, GDNF, TGF-𝛃3) neurons. Thus, it is important to first identify the self-renewing cell line: its source and its final differentiation state, followed by the supplements and cytokines required for the differentiation, and final use. Timelines are another thing that is considered. For instance, it takes 7-10 days to form neural rosettes from iPSCs and 3 days to differentiate neural progenitors to neurons. Finally, the stability for stem cell culture media varies. It is advised to make fresh media every time when differentiating HSCs to myeloid populations, whereas neural differentiation media may remain stable for two weeks when stored in dark between 2-8C.

Cell culture media Stem cell Differentiation media Human Limbal Epithelial cells

RNA siRNA / miRNA gene silencing Rat Glial cells C/EBP‐β

RNA siRNA / miRNA gene silencing Rat Retinal stem cells Brn-3b

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms